dispatch/vendor/github.com/dsnet/compress/brotli/bit_reader.go
2017-04-14 04:33:44 +02:00

374 lines
10 KiB
Go

// Copyright 2015, Joe Tsai. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package brotli
import "io"
import "bufio"
// The bitReader preserves the property that it will never read more bytes than
// is necessary. However, this feature dramatically hurts performance because
// every byte needs to be obtained through a ReadByte method call.
// Furthermore, the decoding of variable length codes in ReadSymbol, often
// requires multiple passes before it knows the exact bit-length of the code.
//
// Thus, to improve performance, if the underlying byteReader is a bufio.Reader,
// then the bitReader will use the Peek and Discard methods to fill the internal
// bit buffer with as many bits as possible, allowing the TryReadBits and
// TryReadSymbol methods to often succeed on the first try.
type byteReader interface {
io.Reader
io.ByteReader
}
type bitReader struct {
rd byteReader
bufBits uint64 // Buffer to hold some bits
numBits uint // Number of valid bits in bufBits
offset int64 // Number of bytes read from the underlying io.Reader
// These fields are only used if rd is a bufio.Reader.
bufRd *bufio.Reader
bufPeek []byte // Buffer for the Peek data
discardBits int // Number of bits to discard from bufio.Reader
fedBits uint // Number of bits fed in last call to FeedBits
// Local copy of decoders to reduce memory allocations.
prefix prefixDecoder
}
func (br *bitReader) Init(r io.Reader) {
*br = bitReader{prefix: br.prefix}
if rr, ok := r.(byteReader); ok {
br.rd = rr
} else {
br.rd = bufio.NewReader(r)
}
if brd, ok := br.rd.(*bufio.Reader); ok {
br.bufRd = brd
}
}
// FlushOffset updates the read offset of the underlying byteReader.
// If the byteReader is a bufio.Reader, then this calls Discard to update the
// read offset.
func (br *bitReader) FlushOffset() int64 {
if br.bufRd == nil {
return br.offset
}
// Update the number of total bits to discard.
br.discardBits += int(br.fedBits - br.numBits)
br.fedBits = br.numBits
// Discard some bytes to update read offset.
nd := (br.discardBits + 7) / 8 // Round up to nearest byte
nd, _ = br.bufRd.Discard(nd)
br.discardBits -= nd * 8 // -7..0
br.offset += int64(nd)
// These are invalid after Discard.
br.bufPeek = nil
return br.offset
}
// FeedBits ensures that at least nb bits exist in the bit buffer.
// If the underlying byteReader is a bufio.Reader, then this will fill the
// bit buffer with as many bits as possible, relying on Peek and Discard to
// properly advance the read offset. Otherwise, it will use ReadByte to fill the
// buffer with just the right number of bits.
func (br *bitReader) FeedBits(nb uint) {
if br.bufRd != nil {
br.discardBits += int(br.fedBits - br.numBits)
for {
if len(br.bufPeek) == 0 {
br.fedBits = br.numBits // Don't discard bits just added
br.FlushOffset()
var err error
cntPeek := 8 // Minimum Peek amount to make progress
if br.bufRd.Buffered() > cntPeek {
cntPeek = br.bufRd.Buffered()
}
br.bufPeek, err = br.bufRd.Peek(cntPeek)
br.bufPeek = br.bufPeek[int(br.numBits/8):] // Skip buffered bits
if len(br.bufPeek) == 0 {
if br.numBits >= nb {
break
}
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
panic(err)
}
}
cnt := int(64-br.numBits) / 8
if cnt > len(br.bufPeek) {
cnt = len(br.bufPeek)
}
for _, c := range br.bufPeek[:cnt] {
br.bufBits |= uint64(c) << br.numBits
br.numBits += 8
}
br.bufPeek = br.bufPeek[cnt:]
if br.numBits > 56 {
break
}
}
br.fedBits = br.numBits
} else {
for br.numBits < nb {
c, err := br.rd.ReadByte()
if err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
panic(err)
}
br.bufBits |= uint64(c) << br.numBits
br.numBits += 8
br.offset++
}
}
}
// Read reads up to len(buf) bytes into buf.
func (br *bitReader) Read(buf []byte) (cnt int, err error) {
if br.numBits%8 != 0 {
return 0, Error("non-aligned bit buffer")
}
if br.numBits > 0 {
for cnt = 0; len(buf) > cnt && br.numBits > 0; cnt++ {
buf[cnt] = byte(br.bufBits)
br.bufBits >>= 8
br.numBits -= 8
}
} else {
br.FlushOffset()
cnt, err = br.rd.Read(buf)
br.offset += int64(cnt)
}
return cnt, err
}
// TryReadBits attempts to read nb bits using the contents of the bit buffer
// alone. It returns the value and whether it succeeded.
//
// This method is designed to be inlined for performance reasons.
func (br *bitReader) TryReadBits(nb uint) (uint, bool) {
if br.numBits < nb {
return 0, false
}
val := uint(br.bufBits & uint64(1<<nb-1))
br.bufBits >>= nb
br.numBits -= nb
return val, true
}
// ReadBits reads nb bits in LSB order from the underlying reader.
func (br *bitReader) ReadBits(nb uint) uint {
br.FeedBits(nb)
val := uint(br.bufBits & uint64(1<<nb-1))
br.bufBits >>= nb
br.numBits -= nb
return val
}
// ReadPads reads 0-7 bits from the bit buffer to achieve byte-alignment.
func (br *bitReader) ReadPads() uint {
nb := br.numBits % 8
val := uint(br.bufBits & uint64(1<<nb-1))
br.bufBits >>= nb
br.numBits -= nb
return val
}
// TryReadSymbol attempts to decode the next symbol using the contents of the
// bit buffer alone. It returns the decoded symbol and whether it succeeded.
//
// This method is designed to be inlined for performance reasons.
func (br *bitReader) TryReadSymbol(pd *prefixDecoder) (uint, bool) {
if br.numBits < uint(pd.minBits) || len(pd.chunks) == 0 {
return 0, false
}
chunk := pd.chunks[uint32(br.bufBits)&pd.chunkMask]
nb := uint(chunk & prefixCountMask)
if nb > br.numBits || nb > uint(pd.chunkBits) {
return 0, false
}
br.bufBits >>= nb
br.numBits -= nb
return uint(chunk >> prefixCountBits), true
}
// ReadSymbol reads the next prefix symbol using the provided prefixDecoder.
func (br *bitReader) ReadSymbol(pd *prefixDecoder) uint {
if len(pd.chunks) == 0 {
panic(ErrCorrupt) // Decode with empty tree
}
nb := uint(pd.minBits)
for {
br.FeedBits(nb)
chunk := pd.chunks[uint32(br.bufBits)&pd.chunkMask]
nb = uint(chunk & prefixCountMask)
if nb > uint(pd.chunkBits) {
linkIdx := chunk >> prefixCountBits
chunk = pd.links[linkIdx][uint32(br.bufBits>>pd.chunkBits)&pd.linkMask]
nb = uint(chunk & prefixCountMask)
}
if nb <= br.numBits {
br.bufBits >>= nb
br.numBits -= nb
return uint(chunk >> prefixCountBits)
}
}
}
// ReadOffset reads an offset value using the provided rangesCodes indexed by
// the given symbol.
func (br *bitReader) ReadOffset(sym uint, rcs []rangeCode) uint {
rc := rcs[sym]
return uint(rc.base) + br.ReadBits(uint(rc.bits))
}
// ReadPrefixCode reads the prefix definition from the stream and initializes
// the provided prefixDecoder. The value maxSyms is the alphabet size of the
// prefix code being generated. The actual number of representable symbols
// will be between 1 and maxSyms, inclusively.
func (br *bitReader) ReadPrefixCode(pd *prefixDecoder, maxSyms uint) {
hskip := br.ReadBits(2)
if hskip == 1 {
br.readSimplePrefixCode(pd, maxSyms)
} else {
br.readComplexPrefixCode(pd, maxSyms, hskip)
}
}
// readSimplePrefixCode reads the prefix code according to RFC section 3.4.
func (br *bitReader) readSimplePrefixCode(pd *prefixDecoder, maxSyms uint) {
var codes [4]prefixCode
nsym := int(br.ReadBits(2)) + 1
clen := neededBits(uint32(maxSyms))
for i := 0; i < nsym; i++ {
codes[i].sym = uint32(br.ReadBits(clen))
}
var copyLens = func(lens []uint) {
for i := 0; i < nsym; i++ {
codes[i].len = uint32(lens[i])
}
}
var compareSwap = func(i, j int) {
if codes[i].sym > codes[j].sym {
codes[i], codes[j] = codes[j], codes[i]
}
}
switch nsym {
case 1:
copyLens(simpleLens1[:])
case 2:
copyLens(simpleLens2[:])
compareSwap(0, 1)
case 3:
copyLens(simpleLens3[:])
compareSwap(0, 1)
compareSwap(0, 2)
compareSwap(1, 2)
case 4:
if tsel := br.ReadBits(1) == 1; !tsel {
copyLens(simpleLens4a[:])
} else {
copyLens(simpleLens4b[:])
}
compareSwap(0, 1)
compareSwap(2, 3)
compareSwap(0, 2)
compareSwap(1, 3)
compareSwap(1, 2)
}
if uint(codes[nsym-1].sym) >= maxSyms {
panic(ErrCorrupt) // Symbol goes beyond range of alphabet
}
pd.Init(codes[:nsym], true) // Must have 1..4 symbols
}
// readComplexPrefixCode reads the prefix code according to RFC section 3.5.
func (br *bitReader) readComplexPrefixCode(pd *prefixDecoder, maxSyms, hskip uint) {
// Read the code-lengths prefix table.
var codeCLensArr [len(complexLens)]prefixCode // Sorted, but may have holes
sum := 32
for _, sym := range complexLens[hskip:] {
clen := br.ReadSymbol(&decCLens)
if clen > 0 {
codeCLensArr[sym] = prefixCode{sym: uint32(sym), len: uint32(clen)}
if sum -= 32 >> clen; sum <= 0 {
break
}
}
}
codeCLens := codeCLensArr[:0] // Compact the array to have no holes
for _, c := range codeCLensArr {
if c.len > 0 {
codeCLens = append(codeCLens, c)
}
}
if len(codeCLens) < 1 {
panic(ErrCorrupt)
}
br.prefix.Init(codeCLens, true) // Must have 1..len(complexLens) symbols
// Use code-lengths table to decode rest of prefix table.
var codesArr [maxNumAlphabetSyms]prefixCode
var sym, repSymLast, repCntLast, clenLast uint = 0, 0, 0, 8
codes := codesArr[:0]
for sym, sum = 0, 32768; sym < maxSyms && sum > 0; {
clen := br.ReadSymbol(&br.prefix)
if clen < 16 {
// Literal bit-length symbol used.
if clen > 0 {
codes = append(codes, prefixCode{sym: uint32(sym), len: uint32(clen)})
clenLast = clen
sum -= 32768 >> clen
}
repSymLast = 0 // Reset last repeater symbol
sym++
} else {
// Repeater symbol used.
// 16: Repeat previous non-zero code-length
// 17: Repeat code length of zero
repSym := clen // Rename clen for better clarity
if repSym != repSymLast {
repCntLast = 0
repSymLast = repSym
}
nb := repSym - 14 // 2..3 bits
rep := br.ReadBits(nb) + 3 // 3..6 or 3..10
if repCntLast > 0 {
rep += (repCntLast - 2) << nb // Modify previous repeat count
}
repDiff := rep - repCntLast // Always positive
repCntLast = rep
if repSym == 16 {
clen := clenLast
for symEnd := sym + repDiff; sym < symEnd; sym++ {
codes = append(codes, prefixCode{sym: uint32(sym), len: uint32(clen)})
}
sum -= int(repDiff) * (32768 >> clen)
} else {
sym += repDiff
}
}
}
if len(codes) < 2 || sym > maxSyms {
panic(ErrCorrupt)
}
pd.Init(codes, true) // Must have 2..maxSyms symbols
}