// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package ocsp parses OCSP responses as specified in RFC 2560. OCSP responses // are signed messages attesting to the validity of a certificate for a small // period of time. This is used to manage revocation for X.509 certificates. package ocsp // import "golang.org/x/crypto/ocsp" import ( "crypto" "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "crypto/rsa" "crypto/sha1" "crypto/x509" "crypto/x509/pkix" "encoding/asn1" "errors" "math/big" "strconv" "time" ) var idPKIXOCSPBasic = asn1.ObjectIdentifier([]int{1, 3, 6, 1, 5, 5, 7, 48, 1, 1}) // ResponseStatus contains the result of an OCSP request. See // https://tools.ietf.org/html/rfc6960#section-2.3 type ResponseStatus int const ( Success ResponseStatus = 0 Malformed ResponseStatus = 1 InternalError ResponseStatus = 2 TryLater ResponseStatus = 3 // Status code four is ununsed in OCSP. See // https://tools.ietf.org/html/rfc6960#section-4.2.1 SignatureRequired ResponseStatus = 5 Unauthorized ResponseStatus = 6 ) func (r ResponseStatus) String() string { switch r { case Success: return "success" case Malformed: return "malformed" case InternalError: return "internal error" case TryLater: return "try later" case SignatureRequired: return "signature required" case Unauthorized: return "unauthorized" default: return "unknown OCSP status: " + strconv.Itoa(int(r)) } } // ResponseError is an error that may be returned by ParseResponse to indicate // that the response itself is an error, not just that its indicating that a // certificate is revoked, unknown, etc. type ResponseError struct { Status ResponseStatus } func (r ResponseError) Error() string { return "ocsp: error from server: " + r.Status.String() } // These are internal structures that reflect the ASN.1 structure of an OCSP // response. See RFC 2560, section 4.2. type certID struct { HashAlgorithm pkix.AlgorithmIdentifier NameHash []byte IssuerKeyHash []byte SerialNumber *big.Int } // https://tools.ietf.org/html/rfc2560#section-4.1.1 type ocspRequest struct { TBSRequest tbsRequest } type tbsRequest struct { Version int `asn1:"explicit,tag:0,default:0,optional"` RequestorName pkix.RDNSequence `asn1:"explicit,tag:1,optional"` RequestList []request } type request struct { Cert certID } type responseASN1 struct { Status asn1.Enumerated Response responseBytes `asn1:"explicit,tag:0,optional"` } type responseBytes struct { ResponseType asn1.ObjectIdentifier Response []byte } type basicResponse struct { TBSResponseData responseData SignatureAlgorithm pkix.AlgorithmIdentifier Signature asn1.BitString Certificates []asn1.RawValue `asn1:"explicit,tag:0,optional"` } type responseData struct { Raw asn1.RawContent Version int `asn1:"optional,default:1,explicit,tag:0"` RawResponderName asn1.RawValue `asn1:"optional,explicit,tag:1"` KeyHash []byte `asn1:"optional,explicit,tag:2"` ProducedAt time.Time `asn1:"generalized"` Responses []singleResponse } type singleResponse struct { CertID certID Good asn1.Flag `asn1:"tag:0,optional"` Revoked revokedInfo `asn1:"tag:1,optional"` Unknown asn1.Flag `asn1:"tag:2,optional"` ThisUpdate time.Time `asn1:"generalized"` NextUpdate time.Time `asn1:"generalized,explicit,tag:0,optional"` SingleExtensions []pkix.Extension `asn1:"explicit,tag:1,optional"` } type revokedInfo struct { RevocationTime time.Time `asn1:"generalized"` Reason asn1.Enumerated `asn1:"explicit,tag:0,optional"` } var ( oidSignatureMD2WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2} oidSignatureMD5WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4} oidSignatureSHA1WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5} oidSignatureSHA256WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11} oidSignatureSHA384WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12} oidSignatureSHA512WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13} oidSignatureDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3} oidSignatureDSAWithSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 4, 3, 2} oidSignatureECDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 1} oidSignatureECDSAWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 2} oidSignatureECDSAWithSHA384 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 3} oidSignatureECDSAWithSHA512 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 4} ) var hashOIDs = map[crypto.Hash]asn1.ObjectIdentifier{ crypto.SHA1: asn1.ObjectIdentifier([]int{1, 3, 14, 3, 2, 26}), crypto.SHA256: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 1}), crypto.SHA384: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 2}), crypto.SHA512: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 3}), } // TODO(rlb): This is also from crypto/x509, so same comment as AGL's below var signatureAlgorithmDetails = []struct { algo x509.SignatureAlgorithm oid asn1.ObjectIdentifier pubKeyAlgo x509.PublicKeyAlgorithm hash crypto.Hash }{ {x509.MD2WithRSA, oidSignatureMD2WithRSA, x509.RSA, crypto.Hash(0) /* no value for MD2 */}, {x509.MD5WithRSA, oidSignatureMD5WithRSA, x509.RSA, crypto.MD5}, {x509.SHA1WithRSA, oidSignatureSHA1WithRSA, x509.RSA, crypto.SHA1}, {x509.SHA256WithRSA, oidSignatureSHA256WithRSA, x509.RSA, crypto.SHA256}, {x509.SHA384WithRSA, oidSignatureSHA384WithRSA, x509.RSA, crypto.SHA384}, {x509.SHA512WithRSA, oidSignatureSHA512WithRSA, x509.RSA, crypto.SHA512}, {x509.DSAWithSHA1, oidSignatureDSAWithSHA1, x509.DSA, crypto.SHA1}, {x509.DSAWithSHA256, oidSignatureDSAWithSHA256, x509.DSA, crypto.SHA256}, {x509.ECDSAWithSHA1, oidSignatureECDSAWithSHA1, x509.ECDSA, crypto.SHA1}, {x509.ECDSAWithSHA256, oidSignatureECDSAWithSHA256, x509.ECDSA, crypto.SHA256}, {x509.ECDSAWithSHA384, oidSignatureECDSAWithSHA384, x509.ECDSA, crypto.SHA384}, {x509.ECDSAWithSHA512, oidSignatureECDSAWithSHA512, x509.ECDSA, crypto.SHA512}, } // TODO(rlb): This is also from crypto/x509, so same comment as AGL's below func signingParamsForPublicKey(pub interface{}, requestedSigAlgo x509.SignatureAlgorithm) (hashFunc crypto.Hash, sigAlgo pkix.AlgorithmIdentifier, err error) { var pubType x509.PublicKeyAlgorithm switch pub := pub.(type) { case *rsa.PublicKey: pubType = x509.RSA hashFunc = crypto.SHA256 sigAlgo.Algorithm = oidSignatureSHA256WithRSA sigAlgo.Parameters = asn1.RawValue{ Tag: 5, } case *ecdsa.PublicKey: pubType = x509.ECDSA switch pub.Curve { case elliptic.P224(), elliptic.P256(): hashFunc = crypto.SHA256 sigAlgo.Algorithm = oidSignatureECDSAWithSHA256 case elliptic.P384(): hashFunc = crypto.SHA384 sigAlgo.Algorithm = oidSignatureECDSAWithSHA384 case elliptic.P521(): hashFunc = crypto.SHA512 sigAlgo.Algorithm = oidSignatureECDSAWithSHA512 default: err = errors.New("x509: unknown elliptic curve") } default: err = errors.New("x509: only RSA and ECDSA keys supported") } if err != nil { return } if requestedSigAlgo == 0 { return } found := false for _, details := range signatureAlgorithmDetails { if details.algo == requestedSigAlgo { if details.pubKeyAlgo != pubType { err = errors.New("x509: requested SignatureAlgorithm does not match private key type") return } sigAlgo.Algorithm, hashFunc = details.oid, details.hash if hashFunc == 0 { err = errors.New("x509: cannot sign with hash function requested") return } found = true break } } if !found { err = errors.New("x509: unknown SignatureAlgorithm") } return } // TODO(agl): this is taken from crypto/x509 and so should probably be exported // from crypto/x509 or crypto/x509/pkix. func getSignatureAlgorithmFromOID(oid asn1.ObjectIdentifier) x509.SignatureAlgorithm { for _, details := range signatureAlgorithmDetails { if oid.Equal(details.oid) { return details.algo } } return x509.UnknownSignatureAlgorithm } // TODO(rlb): This is not taken from crypto/x509, but it's of the same general form. func getHashAlgorithmFromOID(target asn1.ObjectIdentifier) crypto.Hash { for hash, oid := range hashOIDs { if oid.Equal(target) { return hash } } return crypto.Hash(0) } // This is the exposed reflection of the internal OCSP structures. // The status values that can be expressed in OCSP. See RFC 6960. const ( // Good means that the certificate is valid. Good = iota // Revoked means that the certificate has been deliberately revoked. Revoked // Unknown means that the OCSP responder doesn't know about the certificate. Unknown // ServerFailed is unused and was never used (see // https://go-review.googlesource.com/#/c/18944). ParseResponse will // return a ResponseError when an error response is parsed. ServerFailed ) // The enumerated reasons for revoking a certificate. See RFC 5280. const ( Unspecified = iota KeyCompromise = iota CACompromise = iota AffiliationChanged = iota Superseded = iota CessationOfOperation = iota CertificateHold = iota _ = iota RemoveFromCRL = iota PrivilegeWithdrawn = iota AACompromise = iota ) // Request represents an OCSP request. See RFC 6960. type Request struct { HashAlgorithm crypto.Hash IssuerNameHash []byte IssuerKeyHash []byte SerialNumber *big.Int } // Response represents an OCSP response containing a single SingleResponse. See // RFC 6960. type Response struct { // Status is one of {Good, Revoked, Unknown} Status int SerialNumber *big.Int ProducedAt, ThisUpdate, NextUpdate, RevokedAt time.Time RevocationReason int Certificate *x509.Certificate // TBSResponseData contains the raw bytes of the signed response. If // Certificate is nil then this can be used to verify Signature. TBSResponseData []byte Signature []byte SignatureAlgorithm x509.SignatureAlgorithm // Extensions contains raw X.509 extensions from the singleExtensions field // of the OCSP response. When parsing certificates, this can be used to // extract non-critical extensions that are not parsed by this package. When // marshaling OCSP responses, the Extensions field is ignored, see // ExtraExtensions. Extensions []pkix.Extension // ExtraExtensions contains extensions to be copied, raw, into any marshaled // OCSP response (in the singleExtensions field). Values override any // extensions that would otherwise be produced based on the other fields. The // ExtraExtensions field is not populated when parsing certificates, see // Extensions. ExtraExtensions []pkix.Extension } // These are pre-serialized error responses for the various non-success codes // defined by OCSP. The Unauthorized code in particular can be used by an OCSP // responder that supports only pre-signed responses as a response to requests // for certificates with unknown status. See RFC 5019. var ( MalformedRequestErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x01} InternalErrorErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x02} TryLaterErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x03} SigRequredErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x05} UnauthorizedErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x06} ) // CheckSignatureFrom checks that the signature in resp is a valid signature // from issuer. This should only be used if resp.Certificate is nil. Otherwise, // the OCSP response contained an intermediate certificate that created the // signature. That signature is checked by ParseResponse and only // resp.Certificate remains to be validated. func (resp *Response) CheckSignatureFrom(issuer *x509.Certificate) error { return issuer.CheckSignature(resp.SignatureAlgorithm, resp.TBSResponseData, resp.Signature) } // ParseError results from an invalid OCSP response. type ParseError string func (p ParseError) Error() string { return string(p) } // ParseRequest parses an OCSP request in DER form. It only supports // requests for a single certificate. Signed requests are not supported. // If a request includes a signature, it will result in a ParseError. func ParseRequest(bytes []byte) (*Request, error) { var req ocspRequest rest, err := asn1.Unmarshal(bytes, &req) if err != nil { return nil, err } if len(rest) > 0 { return nil, ParseError("trailing data in OCSP request") } if len(req.TBSRequest.RequestList) == 0 { return nil, ParseError("OCSP request contains no request body") } innerRequest := req.TBSRequest.RequestList[0] hashFunc := getHashAlgorithmFromOID(innerRequest.Cert.HashAlgorithm.Algorithm) if hashFunc == crypto.Hash(0) { return nil, ParseError("OCSP request uses unknown hash function") } return &Request{ HashAlgorithm: hashFunc, IssuerNameHash: innerRequest.Cert.NameHash, IssuerKeyHash: innerRequest.Cert.IssuerKeyHash, SerialNumber: innerRequest.Cert.SerialNumber, }, nil } // ParseResponse parses an OCSP response in DER form. It only supports // responses for a single certificate. If the response contains a certificate // then the signature over the response is checked. If issuer is not nil then // it will be used to validate the signature or embedded certificate. // // Invalid signatures or parse failures will result in a ParseError. Error // responses will result in a ResponseError. func ParseResponse(bytes []byte, issuer *x509.Certificate) (*Response, error) { var resp responseASN1 rest, err := asn1.Unmarshal(bytes, &resp) if err != nil { return nil, err } if len(rest) > 0 { return nil, ParseError("trailing data in OCSP response") } if status := ResponseStatus(resp.Status); status != Success { return nil, ResponseError{status} } if !resp.Response.ResponseType.Equal(idPKIXOCSPBasic) { return nil, ParseError("bad OCSP response type") } var basicResp basicResponse rest, err = asn1.Unmarshal(resp.Response.Response, &basicResp) if err != nil { return nil, err } if len(basicResp.Certificates) > 1 { return nil, ParseError("OCSP response contains bad number of certificates") } if len(basicResp.TBSResponseData.Responses) != 1 { return nil, ParseError("OCSP response contains bad number of responses") } ret := &Response{ TBSResponseData: basicResp.TBSResponseData.Raw, Signature: basicResp.Signature.RightAlign(), SignatureAlgorithm: getSignatureAlgorithmFromOID(basicResp.SignatureAlgorithm.Algorithm), } if len(basicResp.Certificates) > 0 { ret.Certificate, err = x509.ParseCertificate(basicResp.Certificates[0].FullBytes) if err != nil { return nil, err } if err := ret.CheckSignatureFrom(ret.Certificate); err != nil { return nil, ParseError("bad OCSP signature") } if issuer != nil { if err := issuer.CheckSignature(ret.Certificate.SignatureAlgorithm, ret.Certificate.RawTBSCertificate, ret.Certificate.Signature); err != nil { return nil, ParseError("bad signature on embedded certificate") } } } else if issuer != nil { if err := ret.CheckSignatureFrom(issuer); err != nil { return nil, ParseError("bad OCSP signature") } } r := basicResp.TBSResponseData.Responses[0] for _, ext := range r.SingleExtensions { if ext.Critical { return nil, ParseError("unsupported critical extension") } } ret.Extensions = r.SingleExtensions ret.SerialNumber = r.CertID.SerialNumber switch { case bool(r.Good): ret.Status = Good case bool(r.Unknown): ret.Status = Unknown default: ret.Status = Revoked ret.RevokedAt = r.Revoked.RevocationTime ret.RevocationReason = int(r.Revoked.Reason) } ret.ProducedAt = basicResp.TBSResponseData.ProducedAt ret.ThisUpdate = r.ThisUpdate ret.NextUpdate = r.NextUpdate return ret, nil } // RequestOptions contains options for constructing OCSP requests. type RequestOptions struct { // Hash contains the hash function that should be used when // constructing the OCSP request. If zero, SHA-1 will be used. Hash crypto.Hash } func (opts *RequestOptions) hash() crypto.Hash { if opts == nil || opts.Hash == 0 { // SHA-1 is nearly universally used in OCSP. return crypto.SHA1 } return opts.Hash } // CreateRequest returns a DER-encoded, OCSP request for the status of cert. If // opts is nil then sensible defaults are used. func CreateRequest(cert, issuer *x509.Certificate, opts *RequestOptions) ([]byte, error) { hashFunc := opts.hash() // OCSP seems to be the only place where these raw hash identifiers are // used. I took the following from // http://msdn.microsoft.com/en-us/library/ff635603.aspx var hashOID asn1.ObjectIdentifier hashOID, ok := hashOIDs[hashFunc] if !ok { return nil, x509.ErrUnsupportedAlgorithm } if !hashFunc.Available() { return nil, x509.ErrUnsupportedAlgorithm } h := opts.hash().New() var publicKeyInfo struct { Algorithm pkix.AlgorithmIdentifier PublicKey asn1.BitString } if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil { return nil, err } h.Write(publicKeyInfo.PublicKey.RightAlign()) issuerKeyHash := h.Sum(nil) h.Reset() h.Write(issuer.RawSubject) issuerNameHash := h.Sum(nil) return asn1.Marshal(ocspRequest{ tbsRequest{ Version: 0, RequestList: []request{ { Cert: certID{ pkix.AlgorithmIdentifier{ Algorithm: hashOID, Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */}, }, issuerNameHash, issuerKeyHash, cert.SerialNumber, }, }, }, }, }) } // CreateResponse returns a DER-encoded OCSP response with the specified contents. // The fields in the response are populated as follows: // // The responder cert is used to populate the ResponderName field, and the certificate // itself is provided alongside the OCSP response signature. // // The issuer cert is used to puplate the IssuerNameHash and IssuerKeyHash fields. // (SHA-1 is used for the hash function; this is not configurable.) // // The template is used to populate the SerialNumber, RevocationStatus, RevokedAt, // RevocationReason, ThisUpdate, and NextUpdate fields. // // The ProducedAt date is automatically set to the current date, to the nearest minute. func CreateResponse(issuer, responderCert *x509.Certificate, template Response, priv crypto.Signer) ([]byte, error) { var publicKeyInfo struct { Algorithm pkix.AlgorithmIdentifier PublicKey asn1.BitString } if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil { return nil, err } h := sha1.New() h.Write(publicKeyInfo.PublicKey.RightAlign()) issuerKeyHash := h.Sum(nil) h.Reset() h.Write(issuer.RawSubject) issuerNameHash := h.Sum(nil) innerResponse := singleResponse{ CertID: certID{ HashAlgorithm: pkix.AlgorithmIdentifier{ Algorithm: hashOIDs[crypto.SHA1], Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */}, }, NameHash: issuerNameHash, IssuerKeyHash: issuerKeyHash, SerialNumber: template.SerialNumber, }, ThisUpdate: template.ThisUpdate.UTC(), NextUpdate: template.NextUpdate.UTC(), SingleExtensions: template.ExtraExtensions, } switch template.Status { case Good: innerResponse.Good = true case Unknown: innerResponse.Unknown = true case Revoked: innerResponse.Revoked = revokedInfo{ RevocationTime: template.RevokedAt.UTC(), Reason: asn1.Enumerated(template.RevocationReason), } } responderName := asn1.RawValue{ Class: 2, // context-specific Tag: 1, // explicit tag IsCompound: true, Bytes: responderCert.RawSubject, } tbsResponseData := responseData{ Version: 0, RawResponderName: responderName, ProducedAt: time.Now().Truncate(time.Minute).UTC(), Responses: []singleResponse{innerResponse}, } tbsResponseDataDER, err := asn1.Marshal(tbsResponseData) if err != nil { return nil, err } hashFunc, signatureAlgorithm, err := signingParamsForPublicKey(priv.Public(), template.SignatureAlgorithm) if err != nil { return nil, err } responseHash := hashFunc.New() responseHash.Write(tbsResponseDataDER) signature, err := priv.Sign(rand.Reader, responseHash.Sum(nil), hashFunc) if err != nil { return nil, err } response := basicResponse{ TBSResponseData: tbsResponseData, SignatureAlgorithm: signatureAlgorithm, Signature: asn1.BitString{ Bytes: signature, BitLength: 8 * len(signature), }, } if template.Certificate != nil { response.Certificates = []asn1.RawValue{ asn1.RawValue{FullBytes: template.Certificate.Raw}, } } responseDER, err := asn1.Marshal(response) if err != nil { return nil, err } return asn1.Marshal(responseASN1{ Status: asn1.Enumerated(Success), Response: responseBytes{ ResponseType: idPKIXOCSPBasic, Response: responseDER, }, }) }