// Package mapstructure exposes functionality to convert one arbitrary // Go type into another, typically to convert a map[string]interface{} // into a native Go structure. // // The Go structure can be arbitrarily complex, containing slices, // other structs, etc. and the decoder will properly decode nested // maps and so on into the proper structures in the native Go struct. // See the examples to see what the decoder is capable of. // // The simplest function to start with is Decode. // // Field Tags // // When decoding to a struct, mapstructure will use the field name by // default to perform the mapping. For example, if a struct has a field // "Username" then mapstructure will look for a key in the source value // of "username" (case insensitive). // // type User struct { // Username string // } // // You can change the behavior of mapstructure by using struct tags. // The default struct tag that mapstructure looks for is "mapstructure" // but you can customize it using DecoderConfig. // // Renaming Fields // // To rename the key that mapstructure looks for, use the "mapstructure" // tag and set a value directly. For example, to change the "username" example // above to "user": // // type User struct { // Username string `mapstructure:"user"` // } // // Embedded Structs and Squashing // // Embedded structs are treated as if they're another field with that name. // By default, the two structs below are equivalent when decoding with // mapstructure: // // type Person struct { // Name string // } // // type Friend struct { // Person // } // // type Friend struct { // Person Person // } // // This would require an input that looks like below: // // map[string]interface{}{ // "person": map[string]interface{}{"name": "alice"}, // } // // If your "person" value is NOT nested, then you can append ",squash" to // your tag value and mapstructure will treat it as if the embedded struct // were part of the struct directly. Example: // // type Friend struct { // Person `mapstructure:",squash"` // } // // Now the following input would be accepted: // // map[string]interface{}{ // "name": "alice", // } // // DecoderConfig has a field that changes the behavior of mapstructure // to always squash embedded structs. // // Remainder Values // // If there are any unmapped keys in the source value, mapstructure by // default will silently ignore them. You can error by setting ErrorUnused // in DecoderConfig. If you're using Metadata you can also maintain a slice // of the unused keys. // // You can also use the ",remain" suffix on your tag to collect all unused // values in a map. The field with this tag MUST be a map type and should // probably be a "map[string]interface{}" or "map[interface{}]interface{}". // See example below: // // type Friend struct { // Name string // Other map[string]interface{} `mapstructure:",remain"` // } // // Given the input below, Other would be populated with the other // values that weren't used (everything but "name"): // // map[string]interface{}{ // "name": "bob", // "address": "123 Maple St.", // } // // Omit Empty Values // // When decoding from a struct to any other value, you may use the // ",omitempty" suffix on your tag to omit that value if it equates to // the zero value. The zero value of all types is specified in the Go // specification. // // For example, the zero type of a numeric type is zero ("0"). If the struct // field value is zero and a numeric type, the field is empty, and it won't // be encoded into the destination type. // // type Source { // Age int `mapstructure:",omitempty"` // } // // Unexported fields // // Since unexported (private) struct fields cannot be set outside the package // where they are defined, the decoder will simply skip them. // // For this output type definition: // // type Exported struct { // private string // this unexported field will be skipped // Public string // } // // Using this map as input: // // map[string]interface{}{ // "private": "I will be ignored", // "Public": "I made it through!", // } // // The following struct will be decoded: // // type Exported struct { // private: "" // field is left with an empty string (zero value) // Public: "I made it through!" // } // // Other Configuration // // mapstructure is highly configurable. See the DecoderConfig struct // for other features and options that are supported. package mapstructure import ( "encoding/json" "errors" "fmt" "reflect" "sort" "strconv" "strings" ) // DecodeHookFunc is the callback function that can be used for // data transformations. See "DecodeHook" in the DecoderConfig // struct. // // The type should be DecodeHookFuncType or DecodeHookFuncKind. // Either is accepted. Types are a superset of Kinds (Types can return // Kinds) and are generally a richer thing to use, but Kinds are simpler // if you only need those. // // The reason DecodeHookFunc is multi-typed is for backwards compatibility: // we started with Kinds and then realized Types were the better solution, // but have a promise to not break backwards compat so we now support // both. type DecodeHookFunc interface{} // DecodeHookFuncType is a DecodeHookFunc which has complete information about // the source and target types. type DecodeHookFuncType func(reflect.Type, reflect.Type, interface{}) (interface{}, error) // DecodeHookFuncKind is a DecodeHookFunc which knows only the Kinds of the // source and target types. type DecodeHookFuncKind func(reflect.Kind, reflect.Kind, interface{}) (interface{}, error) // DecoderConfig is the configuration that is used to create a new decoder // and allows customization of various aspects of decoding. type DecoderConfig struct { // DecodeHook, if set, will be called before any decoding and any // type conversion (if WeaklyTypedInput is on). This lets you modify // the values before they're set down onto the resulting struct. // // If an error is returned, the entire decode will fail with that // error. DecodeHook DecodeHookFunc // If ErrorUnused is true, then it is an error for there to exist // keys in the original map that were unused in the decoding process // (extra keys). ErrorUnused bool // ZeroFields, if set to true, will zero fields before writing them. // For example, a map will be emptied before decoded values are put in // it. If this is false, a map will be merged. ZeroFields bool // If WeaklyTypedInput is true, the decoder will make the following // "weak" conversions: // // - bools to string (true = "1", false = "0") // - numbers to string (base 10) // - bools to int/uint (true = 1, false = 0) // - strings to int/uint (base implied by prefix) // - int to bool (true if value != 0) // - string to bool (accepts: 1, t, T, TRUE, true, True, 0, f, F, // FALSE, false, False. Anything else is an error) // - empty array = empty map and vice versa // - negative numbers to overflowed uint values (base 10) // - slice of maps to a merged map // - single values are converted to slices if required. Each // element is weakly decoded. For example: "4" can become []int{4} // if the target type is an int slice. // WeaklyTypedInput bool // Squash will squash embedded structs. A squash tag may also be // added to an individual struct field using a tag. For example: // // type Parent struct { // Child `mapstructure:",squash"` // } Squash bool // Metadata is the struct that will contain extra metadata about // the decoding. If this is nil, then no metadata will be tracked. Metadata *Metadata // Result is a pointer to the struct that will contain the decoded // value. Result interface{} // The tag name that mapstructure reads for field names. This // defaults to "mapstructure" TagName string } // A Decoder takes a raw interface value and turns it into structured // data, keeping track of rich error information along the way in case // anything goes wrong. Unlike the basic top-level Decode method, you can // more finely control how the Decoder behaves using the DecoderConfig // structure. The top-level Decode method is just a convenience that sets // up the most basic Decoder. type Decoder struct { config *DecoderConfig } // Metadata contains information about decoding a structure that // is tedious or difficult to get otherwise. type Metadata struct { // Keys are the keys of the structure which were successfully decoded Keys []string // Unused is a slice of keys that were found in the raw value but // weren't decoded since there was no matching field in the result interface Unused []string } // Decode takes an input structure and uses reflection to translate it to // the output structure. output must be a pointer to a map or struct. func Decode(input interface{}, output interface{}) error { config := &DecoderConfig{ Metadata: nil, Result: output, } decoder, err := NewDecoder(config) if err != nil { return err } return decoder.Decode(input) } // WeakDecode is the same as Decode but is shorthand to enable // WeaklyTypedInput. See DecoderConfig for more info. func WeakDecode(input, output interface{}) error { config := &DecoderConfig{ Metadata: nil, Result: output, WeaklyTypedInput: true, } decoder, err := NewDecoder(config) if err != nil { return err } return decoder.Decode(input) } // DecodeMetadata is the same as Decode, but is shorthand to // enable metadata collection. See DecoderConfig for more info. func DecodeMetadata(input interface{}, output interface{}, metadata *Metadata) error { config := &DecoderConfig{ Metadata: metadata, Result: output, } decoder, err := NewDecoder(config) if err != nil { return err } return decoder.Decode(input) } // WeakDecodeMetadata is the same as Decode, but is shorthand to // enable both WeaklyTypedInput and metadata collection. See // DecoderConfig for more info. func WeakDecodeMetadata(input interface{}, output interface{}, metadata *Metadata) error { config := &DecoderConfig{ Metadata: metadata, Result: output, WeaklyTypedInput: true, } decoder, err := NewDecoder(config) if err != nil { return err } return decoder.Decode(input) } // NewDecoder returns a new decoder for the given configuration. Once // a decoder has been returned, the same configuration must not be used // again. func NewDecoder(config *DecoderConfig) (*Decoder, error) { val := reflect.ValueOf(config.Result) if val.Kind() != reflect.Ptr { return nil, errors.New("result must be a pointer") } val = val.Elem() if !val.CanAddr() { return nil, errors.New("result must be addressable (a pointer)") } if config.Metadata != nil { if config.Metadata.Keys == nil { config.Metadata.Keys = make([]string, 0) } if config.Metadata.Unused == nil { config.Metadata.Unused = make([]string, 0) } } if config.TagName == "" { config.TagName = "mapstructure" } result := &Decoder{ config: config, } return result, nil } // Decode decodes the given raw interface to the target pointer specified // by the configuration. func (d *Decoder) Decode(input interface{}) error { return d.decode("", input, reflect.ValueOf(d.config.Result).Elem()) } // Decodes an unknown data type into a specific reflection value. func (d *Decoder) decode(name string, input interface{}, outVal reflect.Value) error { var inputVal reflect.Value if input != nil { inputVal = reflect.ValueOf(input) // We need to check here if input is a typed nil. Typed nils won't // match the "input == nil" below so we check that here. if inputVal.Kind() == reflect.Ptr && inputVal.IsNil() { input = nil } } if input == nil { // If the data is nil, then we don't set anything, unless ZeroFields is set // to true. if d.config.ZeroFields { outVal.Set(reflect.Zero(outVal.Type())) if d.config.Metadata != nil && name != "" { d.config.Metadata.Keys = append(d.config.Metadata.Keys, name) } } return nil } if !inputVal.IsValid() { // If the input value is invalid, then we just set the value // to be the zero value. outVal.Set(reflect.Zero(outVal.Type())) if d.config.Metadata != nil && name != "" { d.config.Metadata.Keys = append(d.config.Metadata.Keys, name) } return nil } if d.config.DecodeHook != nil { // We have a DecodeHook, so let's pre-process the input. var err error input, err = DecodeHookExec( d.config.DecodeHook, inputVal.Type(), outVal.Type(), input) if err != nil { return fmt.Errorf("error decoding '%s': %s", name, err) } } var err error outputKind := getKind(outVal) addMetaKey := true switch outputKind { case reflect.Bool: err = d.decodeBool(name, input, outVal) case reflect.Interface: err = d.decodeBasic(name, input, outVal) case reflect.String: err = d.decodeString(name, input, outVal) case reflect.Int: err = d.decodeInt(name, input, outVal) case reflect.Uint: err = d.decodeUint(name, input, outVal) case reflect.Float32: err = d.decodeFloat(name, input, outVal) case reflect.Struct: err = d.decodeStruct(name, input, outVal) case reflect.Map: err = d.decodeMap(name, input, outVal) case reflect.Ptr: addMetaKey, err = d.decodePtr(name, input, outVal) case reflect.Slice: err = d.decodeSlice(name, input, outVal) case reflect.Array: err = d.decodeArray(name, input, outVal) case reflect.Func: err = d.decodeFunc(name, input, outVal) default: // If we reached this point then we weren't able to decode it return fmt.Errorf("%s: unsupported type: %s", name, outputKind) } // If we reached here, then we successfully decoded SOMETHING, so // mark the key as used if we're tracking metainput. if addMetaKey && d.config.Metadata != nil && name != "" { d.config.Metadata.Keys = append(d.config.Metadata.Keys, name) } return err } // This decodes a basic type (bool, int, string, etc.) and sets the // value to "data" of that type. func (d *Decoder) decodeBasic(name string, data interface{}, val reflect.Value) error { if val.IsValid() && val.Elem().IsValid() { return d.decode(name, data, val.Elem()) } dataVal := reflect.ValueOf(data) // If the input data is a pointer, and the assigned type is the dereference // of that exact pointer, then indirect it so that we can assign it. // Example: *string to string if dataVal.Kind() == reflect.Ptr && dataVal.Type().Elem() == val.Type() { dataVal = reflect.Indirect(dataVal) } if !dataVal.IsValid() { dataVal = reflect.Zero(val.Type()) } dataValType := dataVal.Type() if !dataValType.AssignableTo(val.Type()) { return fmt.Errorf( "'%s' expected type '%s', got '%s'", name, val.Type(), dataValType) } val.Set(dataVal) return nil } func (d *Decoder) decodeString(name string, data interface{}, val reflect.Value) error { dataVal := reflect.Indirect(reflect.ValueOf(data)) dataKind := getKind(dataVal) converted := true switch { case dataKind == reflect.String: val.SetString(dataVal.String()) case dataKind == reflect.Bool && d.config.WeaklyTypedInput: if dataVal.Bool() { val.SetString("1") } else { val.SetString("0") } case dataKind == reflect.Int && d.config.WeaklyTypedInput: val.SetString(strconv.FormatInt(dataVal.Int(), 10)) case dataKind == reflect.Uint && d.config.WeaklyTypedInput: val.SetString(strconv.FormatUint(dataVal.Uint(), 10)) case dataKind == reflect.Float32 && d.config.WeaklyTypedInput: val.SetString(strconv.FormatFloat(dataVal.Float(), 'f', -1, 64)) case dataKind == reflect.Slice && d.config.WeaklyTypedInput, dataKind == reflect.Array && d.config.WeaklyTypedInput: dataType := dataVal.Type() elemKind := dataType.Elem().Kind() switch elemKind { case reflect.Uint8: var uints []uint8 if dataKind == reflect.Array { uints = make([]uint8, dataVal.Len(), dataVal.Len()) for i := range uints { uints[i] = dataVal.Index(i).Interface().(uint8) } } else { uints = dataVal.Interface().([]uint8) } val.SetString(string(uints)) default: converted = false } default: converted = false } if !converted { return fmt.Errorf( "'%s' expected type '%s', got unconvertible type '%s'", name, val.Type(), dataVal.Type()) } return nil } func (d *Decoder) decodeInt(name string, data interface{}, val reflect.Value) error { dataVal := reflect.Indirect(reflect.ValueOf(data)) dataKind := getKind(dataVal) dataType := dataVal.Type() switch { case dataKind == reflect.Int: val.SetInt(dataVal.Int()) case dataKind == reflect.Uint: val.SetInt(int64(dataVal.Uint())) case dataKind == reflect.Float32: val.SetInt(int64(dataVal.Float())) case dataKind == reflect.Bool && d.config.WeaklyTypedInput: if dataVal.Bool() { val.SetInt(1) } else { val.SetInt(0) } case dataKind == reflect.String && d.config.WeaklyTypedInput: i, err := strconv.ParseInt(dataVal.String(), 0, val.Type().Bits()) if err == nil { val.SetInt(i) } else { return fmt.Errorf("cannot parse '%s' as int: %s", name, err) } case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number": jn := data.(json.Number) i, err := jn.Int64() if err != nil { return fmt.Errorf( "error decoding json.Number into %s: %s", name, err) } val.SetInt(i) default: return fmt.Errorf( "'%s' expected type '%s', got unconvertible type '%s'", name, val.Type(), dataVal.Type()) } return nil } func (d *Decoder) decodeUint(name string, data interface{}, val reflect.Value) error { dataVal := reflect.Indirect(reflect.ValueOf(data)) dataKind := getKind(dataVal) dataType := dataVal.Type() switch { case dataKind == reflect.Int: i := dataVal.Int() if i < 0 && !d.config.WeaklyTypedInput { return fmt.Errorf("cannot parse '%s', %d overflows uint", name, i) } val.SetUint(uint64(i)) case dataKind == reflect.Uint: val.SetUint(dataVal.Uint()) case dataKind == reflect.Float32: f := dataVal.Float() if f < 0 && !d.config.WeaklyTypedInput { return fmt.Errorf("cannot parse '%s', %f overflows uint", name, f) } val.SetUint(uint64(f)) case dataKind == reflect.Bool && d.config.WeaklyTypedInput: if dataVal.Bool() { val.SetUint(1) } else { val.SetUint(0) } case dataKind == reflect.String && d.config.WeaklyTypedInput: i, err := strconv.ParseUint(dataVal.String(), 0, val.Type().Bits()) if err == nil { val.SetUint(i) } else { return fmt.Errorf("cannot parse '%s' as uint: %s", name, err) } case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number": jn := data.(json.Number) i, err := jn.Int64() if err != nil { return fmt.Errorf( "error decoding json.Number into %s: %s", name, err) } if i < 0 && !d.config.WeaklyTypedInput { return fmt.Errorf("cannot parse '%s', %d overflows uint", name, i) } val.SetUint(uint64(i)) default: return fmt.Errorf( "'%s' expected type '%s', got unconvertible type '%s'", name, val.Type(), dataVal.Type()) } return nil } func (d *Decoder) decodeBool(name string, data interface{}, val reflect.Value) error { dataVal := reflect.Indirect(reflect.ValueOf(data)) dataKind := getKind(dataVal) switch { case dataKind == reflect.Bool: val.SetBool(dataVal.Bool()) case dataKind == reflect.Int && d.config.WeaklyTypedInput: val.SetBool(dataVal.Int() != 0) case dataKind == reflect.Uint && d.config.WeaklyTypedInput: val.SetBool(dataVal.Uint() != 0) case dataKind == reflect.Float32 && d.config.WeaklyTypedInput: val.SetBool(dataVal.Float() != 0) case dataKind == reflect.String && d.config.WeaklyTypedInput: b, err := strconv.ParseBool(dataVal.String()) if err == nil { val.SetBool(b) } else if dataVal.String() == "" { val.SetBool(false) } else { return fmt.Errorf("cannot parse '%s' as bool: %s", name, err) } default: return fmt.Errorf( "'%s' expected type '%s', got unconvertible type '%s'", name, val.Type(), dataVal.Type()) } return nil } func (d *Decoder) decodeFloat(name string, data interface{}, val reflect.Value) error { dataVal := reflect.Indirect(reflect.ValueOf(data)) dataKind := getKind(dataVal) dataType := dataVal.Type() switch { case dataKind == reflect.Int: val.SetFloat(float64(dataVal.Int())) case dataKind == reflect.Uint: val.SetFloat(float64(dataVal.Uint())) case dataKind == reflect.Float32: val.SetFloat(dataVal.Float()) case dataKind == reflect.Bool && d.config.WeaklyTypedInput: if dataVal.Bool() { val.SetFloat(1) } else { val.SetFloat(0) } case dataKind == reflect.String && d.config.WeaklyTypedInput: f, err := strconv.ParseFloat(dataVal.String(), val.Type().Bits()) if err == nil { val.SetFloat(f) } else { return fmt.Errorf("cannot parse '%s' as float: %s", name, err) } case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number": jn := data.(json.Number) i, err := jn.Float64() if err != nil { return fmt.Errorf( "error decoding json.Number into %s: %s", name, err) } val.SetFloat(i) default: return fmt.Errorf( "'%s' expected type '%s', got unconvertible type '%s'", name, val.Type(), dataVal.Type()) } return nil } func (d *Decoder) decodeMap(name string, data interface{}, val reflect.Value) error { valType := val.Type() valKeyType := valType.Key() valElemType := valType.Elem() // By default we overwrite keys in the current map valMap := val // If the map is nil or we're purposely zeroing fields, make a new map if valMap.IsNil() || d.config.ZeroFields { // Make a new map to hold our result mapType := reflect.MapOf(valKeyType, valElemType) valMap = reflect.MakeMap(mapType) } // Check input type and based on the input type jump to the proper func dataVal := reflect.Indirect(reflect.ValueOf(data)) switch dataVal.Kind() { case reflect.Map: return d.decodeMapFromMap(name, dataVal, val, valMap) case reflect.Struct: return d.decodeMapFromStruct(name, dataVal, val, valMap) case reflect.Array, reflect.Slice: if d.config.WeaklyTypedInput { return d.decodeMapFromSlice(name, dataVal, val, valMap) } fallthrough default: return fmt.Errorf("'%s' expected a map, got '%s'", name, dataVal.Kind()) } } func (d *Decoder) decodeMapFromSlice(name string, dataVal reflect.Value, val reflect.Value, valMap reflect.Value) error { // Special case for BC reasons (covered by tests) if dataVal.Len() == 0 { val.Set(valMap) return nil } for i := 0; i < dataVal.Len(); i++ { err := d.decode( fmt.Sprintf("%s[%d]", name, i), dataVal.Index(i).Interface(), val) if err != nil { return err } } return nil } func (d *Decoder) decodeMapFromMap(name string, dataVal reflect.Value, val reflect.Value, valMap reflect.Value) error { valType := val.Type() valKeyType := valType.Key() valElemType := valType.Elem() // Accumulate errors errors := make([]string, 0) // If the input data is empty, then we just match what the input data is. if dataVal.Len() == 0 { if dataVal.IsNil() { if !val.IsNil() { val.Set(dataVal) } } else { // Set to empty allocated value val.Set(valMap) } return nil } for _, k := range dataVal.MapKeys() { fieldName := fmt.Sprintf("%s[%s]", name, k) // First decode the key into the proper type currentKey := reflect.Indirect(reflect.New(valKeyType)) if err := d.decode(fieldName, k.Interface(), currentKey); err != nil { errors = appendErrors(errors, err) continue } // Next decode the data into the proper type v := dataVal.MapIndex(k).Interface() currentVal := reflect.Indirect(reflect.New(valElemType)) if err := d.decode(fieldName, v, currentVal); err != nil { errors = appendErrors(errors, err) continue } valMap.SetMapIndex(currentKey, currentVal) } // Set the built up map to the value val.Set(valMap) // If we had errors, return those if len(errors) > 0 { return &Error{errors} } return nil } func (d *Decoder) decodeMapFromStruct(name string, dataVal reflect.Value, val reflect.Value, valMap reflect.Value) error { typ := dataVal.Type() for i := 0; i < typ.NumField(); i++ { // Get the StructField first since this is a cheap operation. If the // field is unexported, then ignore it. f := typ.Field(i) if f.PkgPath != "" { continue } // Next get the actual value of this field and verify it is assignable // to the map value. v := dataVal.Field(i) if !v.Type().AssignableTo(valMap.Type().Elem()) { return fmt.Errorf("cannot assign type '%s' to map value field of type '%s'", v.Type(), valMap.Type().Elem()) } tagValue := f.Tag.Get(d.config.TagName) keyName := f.Name // If Squash is set in the config, we squash the field down. squash := d.config.Squash && v.Kind() == reflect.Struct && f.Anonymous // Determine the name of the key in the map if index := strings.Index(tagValue, ","); index != -1 { if tagValue[:index] == "-" { continue; } // If "omitempty" is specified in the tag, it ignores empty values. if strings.Index(tagValue[index + 1:], "omitempty") != -1 && isEmptyValue(v) { continue } // If "squash" is specified in the tag, we squash the field down. squash = !squash && strings.Index(tagValue[index + 1:], "squash") != -1 if squash && v.Kind() != reflect.Struct { return fmt.Errorf("cannot squash non-struct type '%s'", v.Type()) } keyName = tagValue[:index] } else if len(tagValue) > 0 { if tagValue == "-" { continue } keyName = tagValue } switch v.Kind() { // this is an embedded struct, so handle it differently case reflect.Struct: x := reflect.New(v.Type()) x.Elem().Set(v) vType := valMap.Type() vKeyType := vType.Key() vElemType := vType.Elem() mType := reflect.MapOf(vKeyType, vElemType) vMap := reflect.MakeMap(mType) err := d.decode(keyName, x.Interface(), vMap) if err != nil { return err } if squash { for _, k := range vMap.MapKeys() { valMap.SetMapIndex(k, vMap.MapIndex(k)) } } else { valMap.SetMapIndex(reflect.ValueOf(keyName), vMap) } default: valMap.SetMapIndex(reflect.ValueOf(keyName), v) } } if val.CanAddr() { val.Set(valMap) } return nil } func (d *Decoder) decodePtr(name string, data interface{}, val reflect.Value) (bool, error) { // If the input data is nil, then we want to just set the output // pointer to be nil as well. isNil := data == nil if !isNil { switch v := reflect.Indirect(reflect.ValueOf(data)); v.Kind() { case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: isNil = v.IsNil() } } if isNil { if !val.IsNil() && val.CanSet() { nilValue := reflect.New(val.Type()).Elem() val.Set(nilValue) } return true, nil } // Create an element of the concrete (non pointer) type and decode // into that. Then set the value of the pointer to this type. valType := val.Type() valElemType := valType.Elem() if val.CanSet() { realVal := val if realVal.IsNil() || d.config.ZeroFields { realVal = reflect.New(valElemType) } if err := d.decode(name, data, reflect.Indirect(realVal)); err != nil { return false, err } val.Set(realVal) } else { if err := d.decode(name, data, reflect.Indirect(val)); err != nil { return false, err } } return false, nil } func (d *Decoder) decodeFunc(name string, data interface{}, val reflect.Value) error { // Create an element of the concrete (non pointer) type and decode // into that. Then set the value of the pointer to this type. dataVal := reflect.Indirect(reflect.ValueOf(data)) if val.Type() != dataVal.Type() { return fmt.Errorf( "'%s' expected type '%s', got unconvertible type '%s'", name, val.Type(), dataVal.Type()) } val.Set(dataVal) return nil } func (d *Decoder) decodeSlice(name string, data interface{}, val reflect.Value) error { dataVal := reflect.Indirect(reflect.ValueOf(data)) dataValKind := dataVal.Kind() valType := val.Type() valElemType := valType.Elem() sliceType := reflect.SliceOf(valElemType) // If we have a non array/slice type then we first attempt to convert. if dataValKind != reflect.Array && dataValKind != reflect.Slice { if d.config.WeaklyTypedInput { switch { // Slice and array we use the normal logic case dataValKind == reflect.Slice, dataValKind == reflect.Array: break // Empty maps turn into empty slices case dataValKind == reflect.Map: if dataVal.Len() == 0 { val.Set(reflect.MakeSlice(sliceType, 0, 0)) return nil } // Create slice of maps of other sizes return d.decodeSlice(name, []interface{}{data}, val) case dataValKind == reflect.String && valElemType.Kind() == reflect.Uint8: return d.decodeSlice(name, []byte(dataVal.String()), val) // All other types we try to convert to the slice type // and "lift" it into it. i.e. a string becomes a string slice. default: // Just re-try this function with data as a slice. return d.decodeSlice(name, []interface{}{data}, val) } } return fmt.Errorf( "'%s': source data must be an array or slice, got %s", name, dataValKind) } // If the input value is nil, then don't allocate since empty != nil if dataVal.IsNil() { return nil } valSlice := val if valSlice.IsNil() || d.config.ZeroFields { // Make a new slice to hold our result, same size as the original data. valSlice = reflect.MakeSlice(sliceType, dataVal.Len(), dataVal.Len()) } // Accumulate any errors errors := make([]string, 0) for i := 0; i < dataVal.Len(); i++ { currentData := dataVal.Index(i).Interface() for valSlice.Len() <= i { valSlice = reflect.Append(valSlice, reflect.Zero(valElemType)) } currentField := valSlice.Index(i) fieldName := fmt.Sprintf("%s[%d]", name, i) if err := d.decode(fieldName, currentData, currentField); err != nil { errors = appendErrors(errors, err) } } // Finally, set the value to the slice we built up val.Set(valSlice) // If there were errors, we return those if len(errors) > 0 { return &Error{errors} } return nil } func (d *Decoder) decodeArray(name string, data interface{}, val reflect.Value) error { dataVal := reflect.Indirect(reflect.ValueOf(data)) dataValKind := dataVal.Kind() valType := val.Type() valElemType := valType.Elem() arrayType := reflect.ArrayOf(valType.Len(), valElemType) valArray := val if valArray.Interface() == reflect.Zero(valArray.Type()).Interface() || d.config.ZeroFields { // Check input type if dataValKind != reflect.Array && dataValKind != reflect.Slice { if d.config.WeaklyTypedInput { switch { // Empty maps turn into empty arrays case dataValKind == reflect.Map: if dataVal.Len() == 0 { val.Set(reflect.Zero(arrayType)) return nil } // All other types we try to convert to the array type // and "lift" it into it. i.e. a string becomes a string array. default: // Just re-try this function with data as a slice. return d.decodeArray(name, []interface{}{data}, val) } } return fmt.Errorf( "'%s': source data must be an array or slice, got %s", name, dataValKind) } if dataVal.Len() > arrayType.Len() { return fmt.Errorf( "'%s': expected source data to have length less or equal to %d, got %d", name, arrayType.Len(), dataVal.Len()) } // Make a new array to hold our result, same size as the original data. valArray = reflect.New(arrayType).Elem() } // Accumulate any errors errors := make([]string, 0) for i := 0; i < dataVal.Len(); i++ { currentData := dataVal.Index(i).Interface() currentField := valArray.Index(i) fieldName := fmt.Sprintf("%s[%d]", name, i) if err := d.decode(fieldName, currentData, currentField); err != nil { errors = appendErrors(errors, err) } } // Finally, set the value to the array we built up val.Set(valArray) // If there were errors, we return those if len(errors) > 0 { return &Error{errors} } return nil } func (d *Decoder) decodeStruct(name string, data interface{}, val reflect.Value) error { dataVal := reflect.Indirect(reflect.ValueOf(data)) // If the type of the value to write to and the data match directly, // then we just set it directly instead of recursing into the structure. if dataVal.Type() == val.Type() { val.Set(dataVal) return nil } dataValKind := dataVal.Kind() switch dataValKind { case reflect.Map: return d.decodeStructFromMap(name, dataVal, val) case reflect.Struct: // Not the most efficient way to do this but we can optimize later if // we want to. To convert from struct to struct we go to map first // as an intermediary. m := make(map[string]interface{}) mval := reflect.Indirect(reflect.ValueOf(&m)) if err := d.decodeMapFromStruct(name, dataVal, mval, mval); err != nil { return err } result := d.decodeStructFromMap(name, mval, val) return result default: return fmt.Errorf("'%s' expected a map, got '%s'", name, dataVal.Kind()) } } func (d *Decoder) decodeStructFromMap(name string, dataVal, val reflect.Value) error { dataValType := dataVal.Type() if kind := dataValType.Key().Kind(); kind != reflect.String && kind != reflect.Interface { return fmt.Errorf( "'%s' needs a map with string keys, has '%s' keys", name, dataValType.Key().Kind()) } dataValKeys := make(map[reflect.Value]struct{}) dataValKeysUnused := make(map[interface{}]struct{}) for _, dataValKey := range dataVal.MapKeys() { dataValKeys[dataValKey] = struct{}{} dataValKeysUnused[dataValKey.Interface()] = struct{}{} } errors := make([]string, 0) // This slice will keep track of all the structs we'll be decoding. // There can be more than one struct if there are embedded structs // that are squashed. structs := make([]reflect.Value, 1, 5) structs[0] = val // Compile the list of all the fields that we're going to be decoding // from all the structs. type field struct { field reflect.StructField val reflect.Value } // remainField is set to a valid field set with the "remain" tag if // we are keeping track of remaining values. var remainField *field fields := []field{} for len(structs) > 0 { structVal := structs[0] structs = structs[1:] structType := structVal.Type() for i := 0; i < structType.NumField(); i++ { fieldType := structType.Field(i) fieldKind := fieldType.Type.Kind() // If "squash" is specified in the tag, we squash the field down. squash := d.config.Squash && fieldKind == reflect.Struct && fieldType.Anonymous remain := false // We always parse the tags cause we're looking for other tags too tagParts := strings.Split(fieldType.Tag.Get(d.config.TagName), ",") for _, tag := range tagParts[1:] { if tag == "squash" { squash = true break } if tag == "remain" { remain = true break } } if squash { if fieldKind != reflect.Struct { errors = appendErrors(errors, fmt.Errorf("%s: unsupported type for squash: %s", fieldType.Name, fieldKind)) } else { structs = append(structs, structVal.FieldByName(fieldType.Name)) } continue } // Build our field if remain { remainField = &field{fieldType, structVal.Field(i)} } else { // Normal struct field, store it away fields = append(fields, field{fieldType, structVal.Field(i)}) } } } // for fieldType, field := range fields { for _, f := range fields { field, fieldValue := f.field, f.val fieldName := field.Name tagValue := field.Tag.Get(d.config.TagName) tagValue = strings.SplitN(tagValue, ",", 2)[0] if tagValue != "" { fieldName = tagValue } rawMapKey := reflect.ValueOf(fieldName) rawMapVal := dataVal.MapIndex(rawMapKey) if !rawMapVal.IsValid() { // Do a slower search by iterating over each key and // doing case-insensitive search. for dataValKey := range dataValKeys { mK, ok := dataValKey.Interface().(string) if !ok { // Not a string key continue } if strings.EqualFold(mK, fieldName) { rawMapKey = dataValKey rawMapVal = dataVal.MapIndex(dataValKey) break } } if !rawMapVal.IsValid() { // There was no matching key in the map for the value in // the struct. Just ignore. continue } } if !fieldValue.IsValid() { // This should never happen panic("field is not valid") } // If we can't set the field, then it is unexported or something, // and we just continue onwards. if !fieldValue.CanSet() { continue } // Delete the key we're using from the unused map so we stop tracking delete(dataValKeysUnused, rawMapKey.Interface()) // If the name is empty string, then we're at the root, and we // don't dot-join the fields. if name != "" { fieldName = fmt.Sprintf("%s.%s", name, fieldName) } if err := d.decode(fieldName, rawMapVal.Interface(), fieldValue); err != nil { errors = appendErrors(errors, err) } } // If we have a "remain"-tagged field and we have unused keys then // we put the unused keys directly into the remain field. if remainField != nil && len(dataValKeysUnused) > 0 { // Build a map of only the unused values remain := map[interface{}]interface{}{} for key := range dataValKeysUnused { remain[key] = dataVal.MapIndex(reflect.ValueOf(key)).Interface() } // Decode it as-if we were just decoding this map onto our map. if err := d.decodeMap(name, remain, remainField.val); err != nil { errors = appendErrors(errors, err) } // Set the map to nil so we have none so that the next check will // not error (ErrorUnused) dataValKeysUnused = nil } if d.config.ErrorUnused && len(dataValKeysUnused) > 0 { keys := make([]string, 0, len(dataValKeysUnused)) for rawKey := range dataValKeysUnused { keys = append(keys, rawKey.(string)) } sort.Strings(keys) err := fmt.Errorf("'%s' has invalid keys: %s", name, strings.Join(keys, ", ")) errors = appendErrors(errors, err) } if len(errors) > 0 { return &Error{errors} } // Add the unused keys to the list of unused keys if we're tracking metadata if d.config.Metadata != nil { for rawKey := range dataValKeysUnused { key := rawKey.(string) if name != "" { key = fmt.Sprintf("%s.%s", name, key) } d.config.Metadata.Unused = append(d.config.Metadata.Unused, key) } } return nil } func isEmptyValue(v reflect.Value) bool { switch getKind(v) { case reflect.Array, reflect.Map, reflect.Slice, reflect.String: return v.Len() == 0 case reflect.Bool: return !v.Bool() case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return v.Int() == 0 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return v.Uint() == 0 case reflect.Float32, reflect.Float64: return v.Float() == 0 case reflect.Interface, reflect.Ptr: return v.IsNil() } return false } func getKind(val reflect.Value) reflect.Kind { kind := val.Kind() switch { case kind >= reflect.Int && kind <= reflect.Int64: return reflect.Int case kind >= reflect.Uint && kind <= reflect.Uint64: return reflect.Uint case kind >= reflect.Float32 && kind <= reflect.Float64: return reflect.Float32 default: return kind } }