Let's Encrypt

This commit is contained in:
Ken-Håvard Lieng 2016-01-04 19:26:32 +01:00
parent 22892a4073
commit b55cb13e44
82 changed files with 13536 additions and 107 deletions

View File

@ -6,4 +6,4 @@ ADD ca-certificates.crt /etc/ssl/certs/
VOLUME ["/data"]
ENTRYPOINT ["/dispatch"]
CMD ["-p=8080", "--dir=/data"]
CMD ["--dir=/data"]

17
Godeps/Godeps.json generated
View File

@ -103,6 +103,10 @@
"ImportPath": "github.com/spf13/viper",
"Rev": "d62d4bb4c68a773c3b5f4e72844913a2d5de0de0"
},
{
"ImportPath": "github.com/square/go-jose",
"Rev": "37934a899dd03635373fd1e143936d32cfe48d31"
},
{
"ImportPath": "github.com/steveyen/gtreap",
"Rev": "72cd76f34c91f8d64a031af97b499e4a0b1a6e0c"
@ -125,6 +129,11 @@
"Comment": "v1.0.0-17-g4b22041",
"Rev": "4b220417a489359f934045d0509d941a7a2a1038"
},
{
"ImportPath": "github.com/xenolf/lego/acme",
"Comment": "v0.1.1-34-g12b5de7",
"Rev": "12b5de7e8cb451949aabad64cce93e4b846e2aa7"
},
{
"ImportPath": "github.com/xordataexchange/crypt/backend",
"Comment": "v0.0.2-17-g749e360",
@ -144,10 +153,18 @@
"ImportPath": "golang.org/x/crypto/cast5",
"Rev": "644910e6da851dcd66a424c71d068d971cfacba5"
},
{
"ImportPath": "golang.org/x/crypto/ocsp",
"Rev": "644910e6da851dcd66a424c71d068d971cfacba5"
},
{
"ImportPath": "golang.org/x/crypto/openpgp",
"Rev": "644910e6da851dcd66a424c71d068d971cfacba5"
},
{
"ImportPath": "golang.org/x/crypto/sha3",
"Rev": "644910e6da851dcd66a424c71d068d971cfacba5"
},
{
"ImportPath": "golang.org/x/text/transform",
"Rev": "c92eb3cd6e70951a111680995e651ea4b2c35539"

View File

@ -0,0 +1,7 @@
*~
.*.swp
*.out
*.test
*.pem
*.cov
jose-util/jose-util

View File

@ -0,0 +1,36 @@
language: go
sudo: false
matrix:
fast_finish: true
allow_failures:
- go: tip
go:
- 1.2
- 1.3
- 1.4
- 1.5
- tip
before_script:
- export PATH=$HOME/.local/bin:$PATH
before_install:
- go get github.com/axw/gocov/gocov
- go get github.com/mattn/goveralls
- go get golang.org/x/tools/cmd/cover || true
- go get code.google.com/p/go.tools/cmd/cover || true
- pip install cram --user `whoami`
script:
- go test . -v -covermode=count -coverprofile=profile.cov
- go test ./cipher -v -covermode=count -coverprofile=cipher/profile.cov
- cd jose-util && go build && PATH=$PWD:$PATH cram -v jose-util.t
- cd ..
after_success:
- tail -n+2 cipher/profile.cov >> profile.cov
- $HOME/gopath/bin/goveralls -coverprofile=profile.cov -service=travis-ci

View File

@ -0,0 +1,10 @@
Serious about security
======================
Square recognizes the important contributions the security research community
can make. We therefore encourage reporting security issues with the code
contained in this repository.
If you believe you have discovered a security vulnerability, please follow the
guidelines at <https://hackerone.com/square-open-source>.

View File

@ -0,0 +1,14 @@
# Contributing
If you would like to contribute code to go-jose you can do so through GitHub by
forking the repository and sending a pull request.
When submitting code, please make every effort to follow existing conventions
and style in order to keep the code as readable as possible. Please also make
sure all tests pass by running `go test`, and format your code with `go fmt`.
We also recommend using `golint` and `errcheck`.
Before your code can be accepted into the project you must also sign the
[Individual Contributor License Agreement][1].
[1]: https://spreadsheets.google.com/spreadsheet/viewform?formkey=dDViT2xzUHAwRkI3X3k5Z0lQM091OGc6MQ&ndplr=1

202
Godeps/_workspace/src/github.com/square/go-jose/LICENSE generated vendored Normal file
View File

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,187 @@
# Go JOSE
[![godoc](http://img.shields.io/badge/godoc-reference-blue.svg?style=flat)](https://godoc.org/github.com/square/go-jose) [![license](http://img.shields.io/badge/license-apache_2.0-red.svg?style=flat)](https://raw.githubusercontent.com/square/go-jose/master/LICENSE) [![build](https://img.shields.io/travis/square/go-jose.svg?style=flat)](https://travis-ci.org/square/go-jose) [![coverage](https://img.shields.io/coveralls/square/go-jose.svg?style=flat)](https://coveralls.io/r/square/go-jose)
Package jose aims to provide an implementation of the Javascript Object Signing
and Encryption set of standards. For the moment, it mainly focuses on encryption
and signing based on the JSON Web Encryption and JSON Web Signature standards.
**Disclaimer**: This library contains encryption software that is subject to
the U.S. Export Administration Regulations. You may not export, re-export,
transfer or download this code or any part of it in violation of any United
States law, directive or regulation. In particular this software may not be
exported or re-exported in any form or on any media to Iran, North Sudan,
Syria, Cuba, or North Korea, or to denied persons or entities mentioned on any
US maintained blocked list.
## Overview
The implementation follows the
[JSON Web Encryption](http://dx.doi.org/10.17487/RFC7516)
standard (RFC 7516) and
[JSON Web Signature](http://dx.doi.org/10.17487/RFC7515)
standard (RFC 7515). Tables of supported algorithms are shown below.
The library supports both the compact and full serialization formats, and has
optional support for multiple recipients. It also comes with a small
command-line utility (`jose-util`) for encrypting/decrypting JWE messages in a
shell.
### Supported algorithms
See below for a table of supported algorithms. Algorithm identifiers match
the names in the
[JSON Web Algorithms](http://dx.doi.org/10.17487/RFC7518)
standard where possible. The
[Godoc reference](https://godoc.org/github.com/square/go-jose#pkg-constants)
has a list of constants.
Key encryption | Algorithm identifier(s)
:------------------------- | :------------------------------
RSA-PKCS#1v1.5 | RSA1_5
RSA-OAEP | RSA-OAEP, RSA-OAEP-256
AES key wrap | A128KW, A192KW, A256KW
AES-GCM key wrap | A128GCMKW, A192GCMKW, A256GCMKW
ECDH-ES + AES key wrap | ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW
ECDH-ES (direct) | ECDH-ES<sup>1</sup>
Direct encryption | dir<sup>1</sup>
<sup>1. Not supported in multi-recipient mode</sup>
Signing / MAC | Algorithm identifier(s)
:------------------------- | :------------------------------
RSASSA-PKCS#1v1.5 | RS256, RS384, RS512
RSASSA-PSS | PS256, PS384, PS512
HMAC | HS256, HS384, HS512
ECDSA | ES256, ES384, ES512
Content encryption | Algorithm identifier(s)
:------------------------- | :------------------------------
AES-CBC+HMAC | A128CBC-HS256, A192CBC-HS384, A256CBC-HS512
AES-GCM | A128GCM, A192GCM, A256GCM
Compression | Algorithm identifiers(s)
:------------------------- | -------------------------------
DEFLATE (RFC 1951) | DEF
### Supported key types
See below for a table of supported key types. These are understood by the
library, and can be passed to corresponding functions such as `NewEncrypter` or
`NewSigner`. Note that if you are creating a new encrypter or signer with a
JsonWebKey, the key id of the JsonWebKey (if present) will be added to any
resulting messages.
Algorithm(s) | Corresponding types
:------------------------- | -------------------------------
RSA | *[rsa.PublicKey](http://golang.org/pkg/crypto/rsa/#PublicKey), *[rsa.PrivateKey](http://golang.org/pkg/crypto/rsa/#PrivateKey), *[jose.JsonWebKey](https://godoc.org/github.com/square/go-jose#JsonWebKey)
ECDH, ECDSA | *[ecdsa.PublicKey](http://golang.org/pkg/crypto/ecdsa/#PublicKey), *[ecdsa.PrivateKey](http://golang.org/pkg/crypto/ecdsa/#PrivateKey), *[jose.JsonWebKey](https://godoc.org/github.com/square/go-jose#JsonWebKey)
AES, HMAC | []byte, *[jose.JsonWebKey](https://godoc.org/github.com/square/go-jose#JsonWebKey)
## Examples
Encryption/decryption example using RSA:
```Go
// Generate a public/private key pair to use for this example. The library
// also provides two utility functions (LoadPublicKey and LoadPrivateKey)
// that can be used to load keys from PEM/DER-encoded data.
privateKey, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
// Instantiate an encrypter using RSA-OAEP with AES128-GCM. An error would
// indicate that the selected algorithm(s) are not currently supported.
publicKey := &privateKey.PublicKey
encrypter, err := NewEncrypter(RSA_OAEP, A128GCM, publicKey)
if err != nil {
panic(err)
}
// Encrypt a sample plaintext. Calling the encrypter returns an encrypted
// JWE object, which can then be serialized for output afterwards. An error
// would indicate a problem in an underlying cryptographic primitive.
var plaintext = []byte("Lorem ipsum dolor sit amet")
object, err := encrypter.Encrypt(plaintext)
if err != nil {
panic(err)
}
// Serialize the encrypted object using the full serialization format.
// Alternatively you can also use the compact format here by calling
// object.CompactSerialize() instead.
serialized := object.FullSerialize()
// Parse the serialized, encrypted JWE object. An error would indicate that
// the given input did not represent a valid message.
object, err = ParseEncrypted(serialized)
if err != nil {
panic(err)
}
// Now we can decrypt and get back our original plaintext. An error here
// would indicate the the message failed to decrypt, e.g. because the auth
// tag was broken or the message was tampered with.
decrypted, err := object.Decrypt(privateKey)
if err != nil {
panic(err)
}
fmt.Printf(string(decrypted))
// output: Lorem ipsum dolor sit amet
```
Signing/verification example using RSA:
```Go
// Generate a public/private key pair to use for this example. The library
// also provides two utility functions (LoadPublicKey and LoadPrivateKey)
// that can be used to load keys from PEM/DER-encoded data.
privateKey, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
// Instantiate a signer using RSASSA-PSS (SHA512) with the given private key.
signer, err := NewSigner(PS512, privateKey)
if err != nil {
panic(err)
}
// Sign a sample payload. Calling the signer returns a protected JWS object,
// which can then be serialized for output afterwards. An error would
// indicate a problem in an underlying cryptographic primitive.
var payload = []byte("Lorem ipsum dolor sit amet")
object, err := signer.Sign(payload)
if err != nil {
panic(err)
}
// Serialize the encrypted object using the full serialization format.
// Alternatively you can also use the compact format here by calling
// object.CompactSerialize() instead.
serialized := object.FullSerialize()
// Parse the serialized, protected JWS object. An error would indicate that
// the given input did not represent a valid message.
object, err = ParseSigned(serialized)
if err != nil {
panic(err)
}
// Now we can verify the signature on the payload. An error here would
// indicate the the message failed to verify, e.g. because the signature was
// broken or the message was tampered with.
output, err := object.Verify(&privateKey.PublicKey)
if err != nil {
panic(err)
}
fmt.Printf(string(output))
// output: Lorem ipsum dolor sit amet
```
More examples can be found in the [Godoc
reference](https://godoc.org/github.com/square/go-jose) for this package. The
`jose-util` subdirectory also contains a small command-line utility for
encrypting/decrypting JWE messages which might be useful as an example.

View File

@ -0,0 +1,498 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"crypto"
"crypto/aes"
"crypto/ecdsa"
"crypto/rand"
"crypto/rsa"
"crypto/sha1"
"crypto/sha256"
"errors"
"fmt"
"math/big"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/square/go-jose/cipher"
)
// A generic RSA-based encrypter/verifier
type rsaEncrypterVerifier struct {
publicKey *rsa.PublicKey
}
// A generic RSA-based decrypter/signer
type rsaDecrypterSigner struct {
privateKey *rsa.PrivateKey
}
// A generic EC-based encrypter/verifier
type ecEncrypterVerifier struct {
publicKey *ecdsa.PublicKey
}
// A key generator for ECDH-ES
type ecKeyGenerator struct {
size int
algID string
publicKey *ecdsa.PublicKey
}
// A generic EC-based decrypter/signer
type ecDecrypterSigner struct {
privateKey *ecdsa.PrivateKey
}
// newRSARecipient creates recipientKeyInfo based on the given key.
func newRSARecipient(keyAlg KeyAlgorithm, publicKey *rsa.PublicKey) (recipientKeyInfo, error) {
// Verify that key management algorithm is supported by this encrypter
switch keyAlg {
case RSA1_5, RSA_OAEP, RSA_OAEP_256:
default:
return recipientKeyInfo{}, ErrUnsupportedAlgorithm
}
return recipientKeyInfo{
keyAlg: keyAlg,
keyEncrypter: &rsaEncrypterVerifier{
publicKey: publicKey,
},
}, nil
}
// newRSASigner creates a recipientSigInfo based on the given key.
func newRSASigner(sigAlg SignatureAlgorithm, privateKey *rsa.PrivateKey) (recipientSigInfo, error) {
// Verify that key management algorithm is supported by this encrypter
switch sigAlg {
case RS256, RS384, RS512, PS256, PS384, PS512:
default:
return recipientSigInfo{}, ErrUnsupportedAlgorithm
}
return recipientSigInfo{
sigAlg: sigAlg,
publicKey: &JsonWebKey{
Key: &privateKey.PublicKey,
},
signer: &rsaDecrypterSigner{
privateKey: privateKey,
},
}, nil
}
// newECDHRecipient creates recipientKeyInfo based on the given key.
func newECDHRecipient(keyAlg KeyAlgorithm, publicKey *ecdsa.PublicKey) (recipientKeyInfo, error) {
// Verify that key management algorithm is supported by this encrypter
switch keyAlg {
case ECDH_ES, ECDH_ES_A128KW, ECDH_ES_A192KW, ECDH_ES_A256KW:
default:
return recipientKeyInfo{}, ErrUnsupportedAlgorithm
}
return recipientKeyInfo{
keyAlg: keyAlg,
keyEncrypter: &ecEncrypterVerifier{
publicKey: publicKey,
},
}, nil
}
// newECDSASigner creates a recipientSigInfo based on the given key.
func newECDSASigner(sigAlg SignatureAlgorithm, privateKey *ecdsa.PrivateKey) (recipientSigInfo, error) {
// Verify that key management algorithm is supported by this encrypter
switch sigAlg {
case ES256, ES384, ES512:
default:
return recipientSigInfo{}, ErrUnsupportedAlgorithm
}
return recipientSigInfo{
sigAlg: sigAlg,
publicKey: &JsonWebKey{
Key: &privateKey.PublicKey,
},
signer: &ecDecrypterSigner{
privateKey: privateKey,
},
}, nil
}
// Encrypt the given payload and update the object.
func (ctx rsaEncrypterVerifier) encryptKey(cek []byte, alg KeyAlgorithm) (recipientInfo, error) {
encryptedKey, err := ctx.encrypt(cek, alg)
if err != nil {
return recipientInfo{}, err
}
return recipientInfo{
encryptedKey: encryptedKey,
header: &rawHeader{},
}, nil
}
// Encrypt the given payload. Based on the key encryption algorithm,
// this will either use RSA-PKCS1v1.5 or RSA-OAEP (with SHA-1 or SHA-256).
func (ctx rsaEncrypterVerifier) encrypt(cek []byte, alg KeyAlgorithm) ([]byte, error) {
switch alg {
case RSA1_5:
return rsa.EncryptPKCS1v15(randReader, ctx.publicKey, cek)
case RSA_OAEP:
return rsa.EncryptOAEP(sha1.New(), randReader, ctx.publicKey, cek, []byte{})
case RSA_OAEP_256:
return rsa.EncryptOAEP(sha256.New(), randReader, ctx.publicKey, cek, []byte{})
}
return nil, ErrUnsupportedAlgorithm
}
// Decrypt the given payload and return the content encryption key.
func (ctx rsaDecrypterSigner) decryptKey(headers rawHeader, recipient *recipientInfo, generator keyGenerator) ([]byte, error) {
return ctx.decrypt(recipient.encryptedKey, KeyAlgorithm(headers.Alg), generator)
}
// Decrypt the given payload. Based on the key encryption algorithm,
// this will either use RSA-PKCS1v1.5 or RSA-OAEP (with SHA-1 or SHA-256).
func (ctx rsaDecrypterSigner) decrypt(jek []byte, alg KeyAlgorithm, generator keyGenerator) ([]byte, error) {
// Note: The random reader on decrypt operations is only used for blinding,
// so stubbing is meanlingless (hence the direct use of rand.Reader).
switch alg {
case RSA1_5:
defer func() {
// DecryptPKCS1v15SessionKey sometimes panics on an invalid payload
// because of an index out of bounds error, which we want to ignore.
// This has been fixed in Go 1.3.1 (released 2014/08/13), the recover()
// only exists for preventing crashes with unpatched versions.
// See: https://groups.google.com/forum/#!topic/golang-dev/7ihX6Y6kx9k
// See: https://code.google.com/p/go/source/detail?r=58ee390ff31602edb66af41ed10901ec95904d33
_ = recover()
}()
// Perform some input validation.
keyBytes := ctx.privateKey.PublicKey.N.BitLen() / 8
if keyBytes != len(jek) {
// Input size is incorrect, the encrypted payload should always match
// the size of the public modulus (e.g. using a 2048 bit key will
// produce 256 bytes of output). Reject this since it's invalid input.
return nil, ErrCryptoFailure
}
cek, _, err := generator.genKey()
if err != nil {
return nil, ErrCryptoFailure
}
// When decrypting an RSA-PKCS1v1.5 payload, we must take precautions to
// prevent chosen-ciphertext attacks as described in RFC 3218, "Preventing
// the Million Message Attack on Cryptographic Message Syntax". We are
// therefore deliberatly ignoring errors here.
_ = rsa.DecryptPKCS1v15SessionKey(rand.Reader, ctx.privateKey, jek, cek)
return cek, nil
case RSA_OAEP:
// Use rand.Reader for RSA blinding
return rsa.DecryptOAEP(sha1.New(), rand.Reader, ctx.privateKey, jek, []byte{})
case RSA_OAEP_256:
// Use rand.Reader for RSA blinding
return rsa.DecryptOAEP(sha256.New(), rand.Reader, ctx.privateKey, jek, []byte{})
}
return nil, ErrUnsupportedAlgorithm
}
// Sign the given payload
func (ctx rsaDecrypterSigner) signPayload(payload []byte, alg SignatureAlgorithm) (Signature, error) {
var hash crypto.Hash
switch alg {
case RS256, PS256:
hash = crypto.SHA256
case RS384, PS384:
hash = crypto.SHA384
case RS512, PS512:
hash = crypto.SHA512
default:
return Signature{}, ErrUnsupportedAlgorithm
}
hasher := hash.New()
// According to documentation, Write() on hash never fails
_, _ = hasher.Write(payload)
hashed := hasher.Sum(nil)
var out []byte
var err error
switch alg {
case RS256, RS384, RS512:
out, err = rsa.SignPKCS1v15(randReader, ctx.privateKey, hash, hashed)
case PS256, PS384, PS512:
out, err = rsa.SignPSS(randReader, ctx.privateKey, hash, hashed, &rsa.PSSOptions{
SaltLength: rsa.PSSSaltLengthAuto,
})
}
if err != nil {
return Signature{}, err
}
return Signature{
Signature: out,
protected: &rawHeader{},
}, nil
}
// Verify the given payload
func (ctx rsaEncrypterVerifier) verifyPayload(payload []byte, signature []byte, alg SignatureAlgorithm) error {
var hash crypto.Hash
switch alg {
case RS256, PS256:
hash = crypto.SHA256
case RS384, PS384:
hash = crypto.SHA384
case RS512, PS512:
hash = crypto.SHA512
default:
return ErrUnsupportedAlgorithm
}
hasher := hash.New()
// According to documentation, Write() on hash never fails
_, _ = hasher.Write(payload)
hashed := hasher.Sum(nil)
switch alg {
case RS256, RS384, RS512:
return rsa.VerifyPKCS1v15(ctx.publicKey, hash, hashed, signature)
case PS256, PS384, PS512:
return rsa.VerifyPSS(ctx.publicKey, hash, hashed, signature, nil)
}
return ErrUnsupportedAlgorithm
}
// Encrypt the given payload and update the object.
func (ctx ecEncrypterVerifier) encryptKey(cek []byte, alg KeyAlgorithm) (recipientInfo, error) {
switch alg {
case ECDH_ES:
// ECDH-ES mode doesn't wrap a key, the shared secret is used directly as the key.
return recipientInfo{
header: &rawHeader{},
}, nil
case ECDH_ES_A128KW, ECDH_ES_A192KW, ECDH_ES_A256KW:
default:
return recipientInfo{}, ErrUnsupportedAlgorithm
}
generator := ecKeyGenerator{
algID: string(alg),
publicKey: ctx.publicKey,
}
switch alg {
case ECDH_ES_A128KW:
generator.size = 16
case ECDH_ES_A192KW:
generator.size = 24
case ECDH_ES_A256KW:
generator.size = 32
}
kek, header, err := generator.genKey()
if err != nil {
return recipientInfo{}, err
}
block, err := aes.NewCipher(kek)
if err != nil {
return recipientInfo{}, err
}
jek, err := josecipher.KeyWrap(block, cek)
if err != nil {
return recipientInfo{}, err
}
return recipientInfo{
encryptedKey: jek,
header: &header,
}, nil
}
// Get key size for EC key generator
func (ctx ecKeyGenerator) keySize() int {
return ctx.size
}
// Get a content encryption key for ECDH-ES
func (ctx ecKeyGenerator) genKey() ([]byte, rawHeader, error) {
priv, err := ecdsa.GenerateKey(ctx.publicKey.Curve, randReader)
if err != nil {
return nil, rawHeader{}, err
}
out := josecipher.DeriveECDHES(ctx.algID, []byte{}, []byte{}, priv, ctx.publicKey, ctx.size)
headers := rawHeader{
Epk: &JsonWebKey{
Key: &priv.PublicKey,
},
}
return out, headers, nil
}
// Decrypt the given payload and return the content encryption key.
func (ctx ecDecrypterSigner) decryptKey(headers rawHeader, recipient *recipientInfo, generator keyGenerator) ([]byte, error) {
if headers.Epk == nil {
return nil, errors.New("square/go-jose: missing epk header")
}
publicKey, ok := headers.Epk.Key.(*ecdsa.PublicKey)
if publicKey == nil || !ok {
return nil, errors.New("square/go-jose: invalid epk header")
}
apuData := headers.Apu.bytes()
apvData := headers.Apv.bytes()
deriveKey := func(algID string, size int) []byte {
return josecipher.DeriveECDHES(algID, apuData, apvData, ctx.privateKey, publicKey, size)
}
var keySize int
switch KeyAlgorithm(headers.Alg) {
case ECDH_ES:
// ECDH-ES uses direct key agreement, no key unwrapping necessary.
return deriveKey(string(headers.Enc), generator.keySize()), nil
case ECDH_ES_A128KW:
keySize = 16
case ECDH_ES_A192KW:
keySize = 24
case ECDH_ES_A256KW:
keySize = 32
default:
return nil, ErrUnsupportedAlgorithm
}
key := deriveKey(headers.Alg, keySize)
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
return josecipher.KeyUnwrap(block, recipient.encryptedKey)
}
// Sign the given payload
func (ctx ecDecrypterSigner) signPayload(payload []byte, alg SignatureAlgorithm) (Signature, error) {
var expectedBitSize int
var hash crypto.Hash
switch alg {
case ES256:
expectedBitSize = 256
hash = crypto.SHA256
case ES384:
expectedBitSize = 384
hash = crypto.SHA384
case ES512:
expectedBitSize = 521
hash = crypto.SHA512
}
curveBits := ctx.privateKey.Curve.Params().BitSize
if expectedBitSize != curveBits {
return Signature{}, fmt.Errorf("square/go-jose: expected %d bit key, got %d bits instead", expectedBitSize, curveBits)
}
hasher := hash.New()
// According to documentation, Write() on hash never fails
_, _ = hasher.Write(payload)
hashed := hasher.Sum(nil)
r, s, err := ecdsa.Sign(randReader, ctx.privateKey, hashed)
if err != nil {
return Signature{}, err
}
keyBytes := curveBits / 8
if curveBits%8 > 0 {
keyBytes += 1
}
// We serialize the outpus (r and s) into big-endian byte arrays and pad
// them with zeros on the left to make sure the sizes work out. Both arrays
// must be keyBytes long, and the output must be 2*keyBytes long.
rBytes := r.Bytes()
rBytesPadded := make([]byte, keyBytes)
copy(rBytesPadded[keyBytes-len(rBytes):], rBytes)
sBytes := s.Bytes()
sBytesPadded := make([]byte, keyBytes)
copy(sBytesPadded[keyBytes-len(sBytes):], sBytes)
out := append(rBytesPadded, sBytesPadded...)
return Signature{
Signature: out,
protected: &rawHeader{},
}, nil
}
// Verify the given payload
func (ctx ecEncrypterVerifier) verifyPayload(payload []byte, signature []byte, alg SignatureAlgorithm) error {
var keySize int
var hash crypto.Hash
switch alg {
case ES256:
keySize = 32
hash = crypto.SHA256
case ES384:
keySize = 48
hash = crypto.SHA384
case ES512:
keySize = 66
hash = crypto.SHA512
}
if len(signature) != 2*keySize {
return fmt.Errorf("square/go-jose: invalid signature size, have %d bytes, wanted %d", len(signature), 2*keySize)
}
hasher := hash.New()
// According to documentation, Write() on hash never fails
_, _ = hasher.Write(payload)
hashed := hasher.Sum(nil)
r := big.NewInt(0).SetBytes(signature[:keySize])
s := big.NewInt(0).SetBytes(signature[keySize:])
match := ecdsa.Verify(ctx.publicKey, hashed, r, s)
if !match {
return errors.New("square/go-jose: ecdsa signature failed to verify")
}
return nil
}

View File

@ -0,0 +1,431 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"bytes"
"crypto/rand"
"crypto/rsa"
"errors"
"io"
"math/big"
"testing"
)
func TestVectorsRSA(t *testing.T) {
// Sources:
// http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm
// ftp://ftp.rsa.com/pub/rsalabs/tmp/pkcs1v15crypt-vectors.txt
priv := &rsa.PrivateKey{
PublicKey: rsa.PublicKey{
N: fromHexInt(`
a8b3b284af8eb50b387034a860f146c4919f318763cd6c5598c8
ae4811a1e0abc4c7e0b082d693a5e7fced675cf4668512772c0c
bc64a742c6c630f533c8cc72f62ae833c40bf25842e984bb78bd
bf97c0107d55bdb662f5c4e0fab9845cb5148ef7392dd3aaff93
ae1e6b667bb3d4247616d4f5ba10d4cfd226de88d39f16fb`),
E: 65537,
},
D: fromHexInt(`
53339cfdb79fc8466a655c7316aca85c55fd8f6dd898fdaf1195
17ef4f52e8fd8e258df93fee180fa0e4ab29693cd83b152a553d
4ac4d1812b8b9fa5af0e7f55fe7304df41570926f3311f15c4d6
5a732c483116ee3d3d2d0af3549ad9bf7cbfb78ad884f84d5beb
04724dc7369b31def37d0cf539e9cfcdd3de653729ead5d1`),
Primes: []*big.Int{
fromHexInt(`
d32737e7267ffe1341b2d5c0d150a81b586fb3132bed2f8d5262
864a9cb9f30af38be448598d413a172efb802c21acf1c11c520c
2f26a471dcad212eac7ca39d`),
fromHexInt(`
cc8853d1d54da630fac004f471f281c7b8982d8224a490edbeb3
3d3e3d5cc93c4765703d1dd791642f1f116a0dd852be2419b2af
72bfe9a030e860b0288b5d77`),
},
}
input := fromHexBytes(
"6628194e12073db03ba94cda9ef9532397d50dba79b987004afefe34")
expectedPKCS := fromHexBytes(`
50b4c14136bd198c2f3c3ed243fce036e168d56517984a263cd66492b808
04f169d210f2b9bdfb48b12f9ea05009c77da257cc600ccefe3a6283789d
8ea0e607ac58e2690ec4ebc10146e8cbaa5ed4d5cce6fe7b0ff9efc1eabb
564dbf498285f449ee61dd7b42ee5b5892cb90601f30cda07bf26489310b
cd23b528ceab3c31`)
expectedOAEP := fromHexBytes(`
354fe67b4a126d5d35fe36c777791a3f7ba13def484e2d3908aff722fad4
68fb21696de95d0be911c2d3174f8afcc201035f7b6d8e69402de5451618
c21a535fa9d7bfc5b8dd9fc243f8cf927db31322d6e881eaa91a996170e6
57a05a266426d98c88003f8477c1227094a0d9fa1e8c4024309ce1ecccb5
210035d47ac72e8a`)
// Mock random reader
randReader = bytes.NewReader(fromHexBytes(`
017341ae3875d5f87101f8cc4fa9b9bc156bb04628fccdb2f4f11e905bd3
a155d376f593bd7304210874eba08a5e22bcccb4c9d3882a93a54db022f5
03d16338b6b7ce16dc7f4bbf9a96b59772d6606e9747c7649bf9e083db98
1884a954ab3c6f18b776ea21069d69776a33e96bad48e1dda0a5ef`))
defer resetRandReader()
// RSA-PKCS1v1.5 encrypt
enc := new(rsaEncrypterVerifier)
enc.publicKey = &priv.PublicKey
encryptedPKCS, err := enc.encrypt(input, RSA1_5)
if err != nil {
t.Error("Encryption failed:", err)
return
}
if bytes.Compare(encryptedPKCS, expectedPKCS) != 0 {
t.Error("Output does not match expected value (PKCS1v1.5)")
}
// RSA-OAEP encrypt
encryptedOAEP, err := enc.encrypt(input, RSA_OAEP)
if err != nil {
t.Error("Encryption failed:", err)
return
}
if bytes.Compare(encryptedOAEP, expectedOAEP) != 0 {
t.Error("Output does not match expected value (OAEP)")
}
// Need fake cipher for PKCS1v1.5 decrypt
resetRandReader()
aes := newAESGCM(len(input))
keygen := randomKeyGenerator{
size: aes.keySize(),
}
// RSA-PKCS1v1.5 decrypt
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
decryptedPKCS, err := dec.decrypt(encryptedPKCS, RSA1_5, keygen)
if err != nil {
t.Error("Decryption failed:", err)
return
}
if bytes.Compare(input, decryptedPKCS) != 0 {
t.Error("Output does not match expected value (PKCS1v1.5)")
}
// RSA-OAEP decrypt
decryptedOAEP, err := dec.decrypt(encryptedOAEP, RSA_OAEP, keygen)
if err != nil {
t.Error("decryption failed:", err)
return
}
if bytes.Compare(input, decryptedOAEP) != 0 {
t.Error("output does not match expected value (OAEP)")
}
}
func TestInvalidAlgorithmsRSA(t *testing.T) {
_, err := newRSARecipient("XYZ", nil)
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
_, err = newRSASigner("XYZ", nil)
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
enc := new(rsaEncrypterVerifier)
enc.publicKey = &rsaTestKey.PublicKey
_, err = enc.encryptKey([]byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
err = enc.verifyPayload([]byte{}, []byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
dec := new(rsaDecrypterSigner)
dec.privateKey = rsaTestKey
_, err = dec.decrypt(make([]byte, 256), "XYZ", randomKeyGenerator{size: 16})
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
_, err = dec.signPayload([]byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
}
type failingKeyGenerator struct{}
func (ctx failingKeyGenerator) keySize() int {
return 0
}
func (ctx failingKeyGenerator) genKey() ([]byte, rawHeader, error) {
return nil, rawHeader{}, errors.New("failed to generate key")
}
func TestPKCSKeyGeneratorFailure(t *testing.T) {
dec := new(rsaDecrypterSigner)
dec.privateKey = rsaTestKey
generator := failingKeyGenerator{}
_, err := dec.decrypt(make([]byte, 256), RSA1_5, generator)
if err != ErrCryptoFailure {
t.Error("should return error on invalid algorithm")
}
}
func TestInvalidAlgorithmsEC(t *testing.T) {
_, err := newECDHRecipient("XYZ", nil)
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
_, err = newECDSASigner("XYZ", nil)
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
enc := new(ecEncrypterVerifier)
enc.publicKey = &ecTestKey256.PublicKey
_, err = enc.encryptKey([]byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Error("should return error on invalid algorithm")
}
}
func TestInvalidECKeyGen(t *testing.T) {
gen := ecKeyGenerator{
size: 16,
algID: "A128GCM",
publicKey: &ecTestKey256.PublicKey,
}
if gen.keySize() != 16 {
t.Error("ec key generator reported incorrect key size")
}
_, _, err := gen.genKey()
if err != nil {
t.Error("ec key generator failed to generate key", err)
}
}
func TestInvalidECDecrypt(t *testing.T) {
dec := ecDecrypterSigner{
privateKey: ecTestKey256,
}
generator := randomKeyGenerator{size: 16}
// Missing epk header
headers := rawHeader{
Alg: string(ECDH_ES),
}
_, err := dec.decryptKey(headers, nil, generator)
if err == nil {
t.Error("ec decrypter accepted object with missing epk header")
}
// Invalid epk header
headers.Epk = &JsonWebKey{}
_, err = dec.decryptKey(headers, nil, generator)
if err == nil {
t.Error("ec decrypter accepted object with invalid epk header")
}
}
func TestDecryptWithIncorrectSize(t *testing.T) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
t.Error(err)
return
}
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
aes := newAESGCM(16)
keygen := randomKeyGenerator{
size: aes.keySize(),
}
payload := make([]byte, 254)
_, err = dec.decrypt(payload, RSA1_5, keygen)
if err == nil {
t.Error("Invalid payload size should return error")
}
payload = make([]byte, 257)
_, err = dec.decrypt(payload, RSA1_5, keygen)
if err == nil {
t.Error("Invalid payload size should return error")
}
}
func TestPKCSDecryptNeverFails(t *testing.T) {
// We don't want RSA-PKCS1 v1.5 decryption to ever fail, in order to prevent
// side-channel timing attacks (Bleichenbacher attack in particular).
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
t.Error(err)
return
}
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
aes := newAESGCM(16)
keygen := randomKeyGenerator{
size: aes.keySize(),
}
for i := 1; i < 50; i++ {
payload := make([]byte, 256)
_, err := io.ReadFull(rand.Reader, payload)
if err != nil {
t.Error("Unable to get random data:", err)
return
}
_, err = dec.decrypt(payload, RSA1_5, keygen)
if err != nil {
t.Error("PKCS1v1.5 decrypt should never fail:", err)
return
}
}
}
func BenchmarkPKCSDecryptWithValidPayloads(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
enc := new(rsaEncrypterVerifier)
enc.publicKey = &priv.PublicKey
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
aes := newAESGCM(32)
b.StopTimer()
b.ResetTimer()
for i := 0; i < b.N; i++ {
plaintext := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, plaintext)
if err != nil {
panic(err)
}
ciphertext, err := enc.encrypt(plaintext, RSA1_5)
if err != nil {
panic(err)
}
keygen := randomKeyGenerator{
size: aes.keySize(),
}
b.StartTimer()
_, err = dec.decrypt(ciphertext, RSA1_5, keygen)
b.StopTimer()
if err != nil {
panic(err)
}
}
}
func BenchmarkPKCSDecryptWithInvalidPayloads(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
enc := new(rsaEncrypterVerifier)
enc.publicKey = &priv.PublicKey
dec := new(rsaDecrypterSigner)
dec.privateKey = priv
aes := newAESGCM(16)
keygen := randomKeyGenerator{
size: aes.keySize(),
}
b.StopTimer()
b.ResetTimer()
for i := 0; i < b.N; i++ {
plaintext := make([]byte, 16)
_, err = io.ReadFull(rand.Reader, plaintext)
if err != nil {
panic(err)
}
ciphertext, err := enc.encrypt(plaintext, RSA1_5)
if err != nil {
panic(err)
}
// Do some simple scrambling
ciphertext[128] ^= 0xFF
b.StartTimer()
_, err = dec.decrypt(ciphertext, RSA1_5, keygen)
b.StopTimer()
if err != nil {
panic(err)
}
}
}
func TestInvalidEllipticCurve(t *testing.T) {
signer256 := ecDecrypterSigner{privateKey: ecTestKey256}
signer384 := ecDecrypterSigner{privateKey: ecTestKey384}
signer521 := ecDecrypterSigner{privateKey: ecTestKey521}
_, err := signer256.signPayload([]byte{}, ES384)
if err == nil {
t.Error("should not generate ES384 signature with P-256 key")
}
_, err = signer256.signPayload([]byte{}, ES512)
if err == nil {
t.Error("should not generate ES512 signature with P-256 key")
}
_, err = signer384.signPayload([]byte{}, ES256)
if err == nil {
t.Error("should not generate ES256 signature with P-384 key")
}
_, err = signer384.signPayload([]byte{}, ES512)
if err == nil {
t.Error("should not generate ES512 signature with P-384 key")
}
_, err = signer521.signPayload([]byte{}, ES256)
if err == nil {
t.Error("should not generate ES256 signature with P-521 key")
}
_, err = signer521.signPayload([]byte{}, ES384)
if err == nil {
t.Error("should not generate ES384 signature with P-521 key")
}
}

View File

@ -0,0 +1,196 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package josecipher
import (
"bytes"
"crypto/cipher"
"crypto/hmac"
"crypto/sha256"
"crypto/sha512"
"crypto/subtle"
"encoding/binary"
"errors"
"hash"
)
const (
nonceBytes = 16
)
// NewCBCHMAC instantiates a new AEAD based on CBC+HMAC.
func NewCBCHMAC(key []byte, newBlockCipher func([]byte) (cipher.Block, error)) (cipher.AEAD, error) {
keySize := len(key) / 2
integrityKey := key[:keySize]
encryptionKey := key[keySize:]
blockCipher, err := newBlockCipher(encryptionKey)
if err != nil {
return nil, err
}
var hash func() hash.Hash
switch keySize {
case 16:
hash = sha256.New
case 24:
hash = sha512.New384
case 32:
hash = sha512.New
}
return &cbcAEAD{
hash: hash,
blockCipher: blockCipher,
authtagBytes: keySize,
integrityKey: integrityKey,
}, nil
}
// An AEAD based on CBC+HMAC
type cbcAEAD struct {
hash func() hash.Hash
authtagBytes int
integrityKey []byte
blockCipher cipher.Block
}
func (ctx *cbcAEAD) NonceSize() int {
return nonceBytes
}
func (ctx *cbcAEAD) Overhead() int {
// Maximum overhead is block size (for padding) plus auth tag length, where
// the length of the auth tag is equivalent to the key size.
return ctx.blockCipher.BlockSize() + ctx.authtagBytes
}
// Seal encrypts and authenticates the plaintext.
func (ctx *cbcAEAD) Seal(dst, nonce, plaintext, data []byte) []byte {
// Output buffer -- must take care not to mangle plaintext input.
ciphertext := make([]byte, len(plaintext)+ctx.Overhead())[:len(plaintext)]
copy(ciphertext, plaintext)
ciphertext = padBuffer(ciphertext, ctx.blockCipher.BlockSize())
cbc := cipher.NewCBCEncrypter(ctx.blockCipher, nonce)
cbc.CryptBlocks(ciphertext, ciphertext)
authtag := ctx.computeAuthTag(data, nonce, ciphertext)
ret, out := resize(dst, len(dst)+len(ciphertext)+len(authtag))
copy(out, ciphertext)
copy(out[len(ciphertext):], authtag)
return ret
}
// Open decrypts and authenticates the ciphertext.
func (ctx *cbcAEAD) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) {
if len(ciphertext) < ctx.authtagBytes {
return nil, errors.New("square/go-jose: invalid ciphertext (too short)")
}
offset := len(ciphertext) - ctx.authtagBytes
expectedTag := ctx.computeAuthTag(data, nonce, ciphertext[:offset])
match := subtle.ConstantTimeCompare(expectedTag, ciphertext[offset:])
if match != 1 {
return nil, errors.New("square/go-jose: invalid ciphertext (auth tag mismatch)")
}
cbc := cipher.NewCBCDecrypter(ctx.blockCipher, nonce)
// Make copy of ciphertext buffer, don't want to modify in place
buffer := append([]byte{}, []byte(ciphertext[:offset])...)
if len(buffer)%ctx.blockCipher.BlockSize() > 0 {
return nil, errors.New("square/go-jose: invalid ciphertext (invalid length)")
}
cbc.CryptBlocks(buffer, buffer)
// Remove padding
plaintext, err := unpadBuffer(buffer, ctx.blockCipher.BlockSize())
if err != nil {
return nil, err
}
ret, out := resize(dst, len(dst)+len(plaintext))
copy(out, plaintext)
return ret, nil
}
// Compute an authentication tag
func (ctx *cbcAEAD) computeAuthTag(aad, nonce, ciphertext []byte) []byte {
buffer := make([]byte, len(aad)+len(nonce)+len(ciphertext)+8)
n := 0
n += copy(buffer, aad)
n += copy(buffer[n:], nonce)
n += copy(buffer[n:], ciphertext)
binary.BigEndian.PutUint64(buffer[n:], uint64(len(aad)*8))
// According to documentation, Write() on hash.Hash never fails.
hmac := hmac.New(ctx.hash, ctx.integrityKey)
_, _ = hmac.Write(buffer)
return hmac.Sum(nil)[:ctx.authtagBytes]
}
// resize ensures the the given slice has a capacity of at least n bytes.
// If the capacity of the slice is less than n, a new slice is allocated
// and the existing data will be copied.
func resize(in []byte, n int) (head, tail []byte) {
if cap(in) >= n {
head = in[:n]
} else {
head = make([]byte, n)
copy(head, in)
}
tail = head[len(in):]
return
}
// Apply padding
func padBuffer(buffer []byte, blockSize int) []byte {
missing := blockSize - (len(buffer) % blockSize)
ret, out := resize(buffer, len(buffer)+missing)
padding := bytes.Repeat([]byte{byte(missing)}, missing)
copy(out, padding)
return ret
}
// Remove padding
func unpadBuffer(buffer []byte, blockSize int) ([]byte, error) {
if len(buffer)%blockSize != 0 {
return nil, errors.New("square/go-jose: invalid padding")
}
last := buffer[len(buffer)-1]
count := int(last)
if count == 0 || count > blockSize || count > len(buffer) {
return nil, errors.New("square/go-jose: invalid padding")
}
padding := bytes.Repeat([]byte{last}, count)
if !bytes.HasSuffix(buffer, padding) {
return nil, errors.New("square/go-jose: invalid padding")
}
return buffer[:len(buffer)-count], nil
}

View File

@ -0,0 +1,498 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package josecipher
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"io"
"strings"
"testing"
)
func TestInvalidInputs(t *testing.T) {
key := []byte{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
}
nonce := []byte{
92, 80, 104, 49, 133, 25, 161, 215, 173, 101, 219, 211, 136, 91, 210, 145}
aead, _ := NewCBCHMAC(key, aes.NewCipher)
ciphertext := aead.Seal(nil, nonce, []byte("plaintext"), []byte("aad"))
// Changed AAD, must fail
_, err := aead.Open(nil, nonce, ciphertext, []byte("INVALID"))
if err == nil {
t.Error("must detect invalid aad")
}
// Empty ciphertext, must fail
_, err = aead.Open(nil, nonce, []byte{}, []byte("aad"))
if err == nil {
t.Error("must detect invalid/empty ciphertext")
}
// Corrupt ciphertext, must fail
corrupt := make([]byte, len(ciphertext))
copy(corrupt, ciphertext)
corrupt[0] ^= 0xFF
_, err = aead.Open(nil, nonce, corrupt, []byte("aad"))
if err == nil {
t.Error("must detect corrupt ciphertext")
}
// Corrupt authtag, must fail
copy(corrupt, ciphertext)
corrupt[len(ciphertext)-1] ^= 0xFF
_, err = aead.Open(nil, nonce, corrupt, []byte("aad"))
if err == nil {
t.Error("must detect corrupt authtag")
}
// Truncated data, must fail
_, err = aead.Open(nil, nonce, ciphertext[:10], []byte("aad"))
if err == nil {
t.Error("must detect corrupt authtag")
}
}
func TestVectorsAESCBC128(t *testing.T) {
// Source: http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-29#appendix-A.2
plaintext := []byte{
76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32,
112, 114, 111, 115, 112, 101, 114, 46}
aad := []byte{
101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69,
120, 88, 122, 85, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105,
74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85,
50, 73, 110, 48}
expectedCiphertext := []byte{
40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6,
75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143,
112, 56, 102}
expectedAuthtag := []byte{
246, 17, 244, 190, 4, 95, 98, 3, 231, 0, 115, 157, 242, 203, 100,
191}
key := []byte{
4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206,
107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207}
nonce := []byte{
3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104, 101}
enc, err := NewCBCHMAC(key, aes.NewCipher)
out := enc.Seal(nil, nonce, plaintext, aad)
if err != nil {
t.Error("Unable to encrypt:", err)
return
}
if bytes.Compare(out[:len(out)-16], expectedCiphertext) != 0 {
t.Error("Ciphertext did not match")
}
if bytes.Compare(out[len(out)-16:], expectedAuthtag) != 0 {
t.Error("Auth tag did not match")
}
}
func TestVectorsAESCBC256(t *testing.T) {
// Source: https://tools.ietf.org/html/draft-mcgrew-aead-aes-cbc-hmac-sha2-05#section-5.4
plaintext := []byte{
0x41, 0x20, 0x63, 0x69, 0x70, 0x68, 0x65, 0x72, 0x20, 0x73, 0x79, 0x73, 0x74, 0x65, 0x6d, 0x20,
0x6d, 0x75, 0x73, 0x74, 0x20, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65, 0x20, 0x72, 0x65, 0x71, 0x75,
0x69, 0x72, 0x65, 0x64, 0x20, 0x74, 0x6f, 0x20, 0x62, 0x65, 0x20, 0x73, 0x65, 0x63, 0x72, 0x65,
0x74, 0x2c, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x69, 0x74, 0x20, 0x6d, 0x75, 0x73, 0x74, 0x20, 0x62,
0x65, 0x20, 0x61, 0x62, 0x6c, 0x65, 0x20, 0x74, 0x6f, 0x20, 0x66, 0x61, 0x6c, 0x6c, 0x20, 0x69,
0x6e, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x68, 0x61, 0x6e, 0x64, 0x73, 0x20, 0x6f, 0x66,
0x20, 0x74, 0x68, 0x65, 0x20, 0x65, 0x6e, 0x65, 0x6d, 0x79, 0x20, 0x77, 0x69, 0x74, 0x68, 0x6f,
0x75, 0x74, 0x20, 0x69, 0x6e, 0x63, 0x6f, 0x6e, 0x76, 0x65, 0x6e, 0x69, 0x65, 0x6e, 0x63, 0x65}
aad := []byte{
0x54, 0x68, 0x65, 0x20, 0x73, 0x65, 0x63, 0x6f, 0x6e, 0x64, 0x20, 0x70, 0x72, 0x69, 0x6e, 0x63,
0x69, 0x70, 0x6c, 0x65, 0x20, 0x6f, 0x66, 0x20, 0x41, 0x75, 0x67, 0x75, 0x73, 0x74, 0x65, 0x20,
0x4b, 0x65, 0x72, 0x63, 0x6b, 0x68, 0x6f, 0x66, 0x66, 0x73}
expectedCiphertext := []byte{
0x4a, 0xff, 0xaa, 0xad, 0xb7, 0x8c, 0x31, 0xc5, 0xda, 0x4b, 0x1b, 0x59, 0x0d, 0x10, 0xff, 0xbd,
0x3d, 0xd8, 0xd5, 0xd3, 0x02, 0x42, 0x35, 0x26, 0x91, 0x2d, 0xa0, 0x37, 0xec, 0xbc, 0xc7, 0xbd,
0x82, 0x2c, 0x30, 0x1d, 0xd6, 0x7c, 0x37, 0x3b, 0xcc, 0xb5, 0x84, 0xad, 0x3e, 0x92, 0x79, 0xc2,
0xe6, 0xd1, 0x2a, 0x13, 0x74, 0xb7, 0x7f, 0x07, 0x75, 0x53, 0xdf, 0x82, 0x94, 0x10, 0x44, 0x6b,
0x36, 0xeb, 0xd9, 0x70, 0x66, 0x29, 0x6a, 0xe6, 0x42, 0x7e, 0xa7, 0x5c, 0x2e, 0x08, 0x46, 0xa1,
0x1a, 0x09, 0xcc, 0xf5, 0x37, 0x0d, 0xc8, 0x0b, 0xfe, 0xcb, 0xad, 0x28, 0xc7, 0x3f, 0x09, 0xb3,
0xa3, 0xb7, 0x5e, 0x66, 0x2a, 0x25, 0x94, 0x41, 0x0a, 0xe4, 0x96, 0xb2, 0xe2, 0xe6, 0x60, 0x9e,
0x31, 0xe6, 0xe0, 0x2c, 0xc8, 0x37, 0xf0, 0x53, 0xd2, 0x1f, 0x37, 0xff, 0x4f, 0x51, 0x95, 0x0b,
0xbe, 0x26, 0x38, 0xd0, 0x9d, 0xd7, 0xa4, 0x93, 0x09, 0x30, 0x80, 0x6d, 0x07, 0x03, 0xb1, 0xf6}
expectedAuthtag := []byte{
0x4d, 0xd3, 0xb4, 0xc0, 0x88, 0xa7, 0xf4, 0x5c, 0x21, 0x68, 0x39, 0x64, 0x5b, 0x20, 0x12, 0xbf,
0x2e, 0x62, 0x69, 0xa8, 0xc5, 0x6a, 0x81, 0x6d, 0xbc, 0x1b, 0x26, 0x77, 0x61, 0x95, 0x5b, 0xc5}
key := []byte{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f}
nonce := []byte{
0x1a, 0xf3, 0x8c, 0x2d, 0xc2, 0xb9, 0x6f, 0xfd, 0xd8, 0x66, 0x94, 0x09, 0x23, 0x41, 0xbc, 0x04}
enc, err := NewCBCHMAC(key, aes.NewCipher)
out := enc.Seal(nil, nonce, plaintext, aad)
if err != nil {
t.Error("Unable to encrypt:", err)
return
}
if bytes.Compare(out[:len(out)-32], expectedCiphertext) != 0 {
t.Error("Ciphertext did not match, got", out[:len(out)-32], "wanted", expectedCiphertext)
}
if bytes.Compare(out[len(out)-32:], expectedAuthtag) != 0 {
t.Error("Auth tag did not match, got", out[len(out)-32:], "wanted", expectedAuthtag)
}
}
func TestAESCBCRoundtrip(t *testing.T) {
key128 := []byte{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
key192 := []byte{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7}
key256 := []byte{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
nonce := []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
RunRoundtrip(t, key128, nonce)
RunRoundtrip(t, key192, nonce)
RunRoundtrip(t, key256, nonce)
}
func RunRoundtrip(t *testing.T, key, nonce []byte) {
aead, err := NewCBCHMAC(key, aes.NewCipher)
if err != nil {
panic(err)
}
if aead.NonceSize() != len(nonce) {
panic("invalid nonce")
}
// Test pre-existing data in dst buffer
dst := []byte{15, 15, 15, 15}
plaintext := []byte{0, 0, 0, 0}
aad := []byte{4, 3, 2, 1}
result := aead.Seal(dst, nonce, plaintext, aad)
if bytes.Compare(dst, result[:4]) != 0 {
t.Error("Existing data in dst not preserved")
}
// Test pre-existing (empty) dst buffer with sufficient capacity
dst = make([]byte, 256)[:0]
result, err = aead.Open(dst, nonce, result[4:], aad)
if err != nil {
panic(err)
}
if bytes.Compare(result, plaintext) != 0 {
t.Error("Plaintext does not match output")
}
}
func TestAESCBCOverhead(t *testing.T) {
aead, err := NewCBCHMAC(make([]byte, 32), aes.NewCipher)
if err != nil {
panic(err)
}
if aead.Overhead() != 32 {
t.Error("CBC-HMAC reports incorrect overhead value")
}
}
func TestPadding(t *testing.T) {
for i := 0; i < 256; i++ {
slice := make([]byte, i)
padded := padBuffer(slice, 16)
if len(padded)%16 != 0 {
t.Error("failed to pad slice properly", i)
return
}
unpadded, err := unpadBuffer(padded, 16)
if err != nil || len(unpadded) != i {
t.Error("failed to unpad slice properly", i)
return
}
}
}
func TestInvalidKey(t *testing.T) {
key := make([]byte, 30)
_, err := NewCBCHMAC(key, aes.NewCipher)
if err == nil {
t.Error("should not be able to instantiate CBC-HMAC with invalid key")
}
}
func TestTruncatedCiphertext(t *testing.T) {
key := make([]byte, 32)
nonce := make([]byte, 16)
data := make([]byte, 32)
io.ReadFull(rand.Reader, key)
io.ReadFull(rand.Reader, nonce)
aead, err := NewCBCHMAC(key, aes.NewCipher)
if err != nil {
panic(err)
}
ctx := aead.(*cbcAEAD)
ct := aead.Seal(nil, nonce, data, nil)
// Truncated ciphertext, but with correct auth tag
truncated, tail := resize(ct[:len(ct)-ctx.authtagBytes-2], len(ct)-2)
copy(tail, ctx.computeAuthTag(nil, nonce, truncated[:len(truncated)-ctx.authtagBytes]))
// Open should fail
_, err = aead.Open(nil, nonce, truncated, nil)
if err == nil {
t.Error("open on truncated ciphertext should fail")
}
}
func TestInvalidPaddingOpen(t *testing.T) {
key := make([]byte, 32)
nonce := make([]byte, 16)
// Plaintext with invalid padding
plaintext := padBuffer(make([]byte, 28), aes.BlockSize)
plaintext[len(plaintext)-1] = 0xFF
io.ReadFull(rand.Reader, key)
io.ReadFull(rand.Reader, nonce)
block, _ := aes.NewCipher(key)
cbc := cipher.NewCBCEncrypter(block, nonce)
buffer := append([]byte{}, plaintext...)
cbc.CryptBlocks(buffer, buffer)
aead, _ := NewCBCHMAC(key, aes.NewCipher)
ctx := aead.(*cbcAEAD)
// Mutated ciphertext, but with correct auth tag
size := len(buffer)
ciphertext, tail := resize(buffer, size+(len(key)/2))
copy(tail, ctx.computeAuthTag(nil, nonce, ciphertext[:size]))
// Open should fail (b/c of invalid padding, even though tag matches)
_, err := aead.Open(nil, nonce, ciphertext, nil)
if err == nil || !strings.Contains(err.Error(), "invalid padding") {
t.Error("no or unexpected error on open with invalid padding:", err)
}
}
func TestInvalidPadding(t *testing.T) {
for i := 0; i < 256; i++ {
slice := make([]byte, i)
padded := padBuffer(slice, 16)
if len(padded)%16 != 0 {
t.Error("failed to pad slice properly", i)
return
}
paddingBytes := 16 - (i % 16)
// Mutate padding for testing
for j := 1; j <= paddingBytes; j++ {
mutated := make([]byte, len(padded))
copy(mutated, padded)
mutated[len(mutated)-j] ^= 0xFF
_, err := unpadBuffer(mutated, 16)
if err == nil {
t.Error("unpad on invalid padding should fail", i)
return
}
}
// Test truncated padding
_, err := unpadBuffer(padded[:len(padded)-1], 16)
if err == nil {
t.Error("unpad on truncated padding should fail", i)
return
}
}
}
func TestZeroLengthPadding(t *testing.T) {
data := make([]byte, 16)
data, err := unpadBuffer(data, 16)
if err == nil {
t.Error("padding with 0x00 should never be valid")
}
}
func benchEncryptCBCHMAC(b *testing.B, keySize, chunkSize int) {
key := make([]byte, keySize*2)
nonce := make([]byte, 16)
io.ReadFull(rand.Reader, key)
io.ReadFull(rand.Reader, nonce)
chunk := make([]byte, chunkSize)
aead, err := NewCBCHMAC(key, aes.NewCipher)
if err != nil {
panic(err)
}
b.SetBytes(int64(chunkSize))
b.ResetTimer()
for i := 0; i < b.N; i++ {
aead.Seal(nil, nonce, chunk, nil)
}
}
func benchDecryptCBCHMAC(b *testing.B, keySize, chunkSize int) {
key := make([]byte, keySize*2)
nonce := make([]byte, 16)
io.ReadFull(rand.Reader, key)
io.ReadFull(rand.Reader, nonce)
chunk := make([]byte, chunkSize)
aead, err := NewCBCHMAC(key, aes.NewCipher)
if err != nil {
panic(err)
}
out := aead.Seal(nil, nonce, chunk, nil)
b.SetBytes(int64(chunkSize))
b.ResetTimer()
for i := 0; i < b.N; i++ {
aead.Open(nil, nonce, out, nil)
}
}
func BenchmarkEncryptAES128_CBCHMAC_1k(b *testing.B) {
benchEncryptCBCHMAC(b, 16, 1024)
}
func BenchmarkEncryptAES128_CBCHMAC_64k(b *testing.B) {
benchEncryptCBCHMAC(b, 16, 65536)
}
func BenchmarkEncryptAES128_CBCHMAC_1MB(b *testing.B) {
benchEncryptCBCHMAC(b, 16, 1048576)
}
func BenchmarkEncryptAES128_CBCHMAC_64MB(b *testing.B) {
benchEncryptCBCHMAC(b, 16, 67108864)
}
func BenchmarkDecryptAES128_CBCHMAC_1k(b *testing.B) {
benchDecryptCBCHMAC(b, 16, 1024)
}
func BenchmarkDecryptAES128_CBCHMAC_64k(b *testing.B) {
benchDecryptCBCHMAC(b, 16, 65536)
}
func BenchmarkDecryptAES128_CBCHMAC_1MB(b *testing.B) {
benchDecryptCBCHMAC(b, 16, 1048576)
}
func BenchmarkDecryptAES128_CBCHMAC_64MB(b *testing.B) {
benchDecryptCBCHMAC(b, 16, 67108864)
}
func BenchmarkEncryptAES192_CBCHMAC_64k(b *testing.B) {
benchEncryptCBCHMAC(b, 24, 65536)
}
func BenchmarkEncryptAES192_CBCHMAC_1MB(b *testing.B) {
benchEncryptCBCHMAC(b, 24, 1048576)
}
func BenchmarkEncryptAES192_CBCHMAC_64MB(b *testing.B) {
benchEncryptCBCHMAC(b, 24, 67108864)
}
func BenchmarkDecryptAES192_CBCHMAC_1k(b *testing.B) {
benchDecryptCBCHMAC(b, 24, 1024)
}
func BenchmarkDecryptAES192_CBCHMAC_64k(b *testing.B) {
benchDecryptCBCHMAC(b, 24, 65536)
}
func BenchmarkDecryptAES192_CBCHMAC_1MB(b *testing.B) {
benchDecryptCBCHMAC(b, 24, 1048576)
}
func BenchmarkDecryptAES192_CBCHMAC_64MB(b *testing.B) {
benchDecryptCBCHMAC(b, 24, 67108864)
}
func BenchmarkEncryptAES256_CBCHMAC_64k(b *testing.B) {
benchEncryptCBCHMAC(b, 32, 65536)
}
func BenchmarkEncryptAES256_CBCHMAC_1MB(b *testing.B) {
benchEncryptCBCHMAC(b, 32, 1048576)
}
func BenchmarkEncryptAES256_CBCHMAC_64MB(b *testing.B) {
benchEncryptCBCHMAC(b, 32, 67108864)
}
func BenchmarkDecryptAES256_CBCHMAC_1k(b *testing.B) {
benchDecryptCBCHMAC(b, 32, 1032)
}
func BenchmarkDecryptAES256_CBCHMAC_64k(b *testing.B) {
benchDecryptCBCHMAC(b, 32, 65536)
}
func BenchmarkDecryptAES256_CBCHMAC_1MB(b *testing.B) {
benchDecryptCBCHMAC(b, 32, 1048576)
}
func BenchmarkDecryptAES256_CBCHMAC_64MB(b *testing.B) {
benchDecryptCBCHMAC(b, 32, 67108864)
}

View File

@ -0,0 +1,75 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package josecipher
import (
"crypto"
"encoding/binary"
"hash"
"io"
)
type concatKDF struct {
z, info []byte
i uint32
cache []byte
hasher hash.Hash
}
// NewConcatKDF builds a KDF reader based on the given inputs.
func NewConcatKDF(hash crypto.Hash, z, algID, ptyUInfo, ptyVInfo, supPubInfo, supPrivInfo []byte) io.Reader {
buffer := make([]byte, len(algID)+len(ptyUInfo)+len(ptyVInfo)+len(supPubInfo)+len(supPrivInfo))
n := 0
n += copy(buffer, algID)
n += copy(buffer[n:], ptyUInfo)
n += copy(buffer[n:], ptyVInfo)
n += copy(buffer[n:], supPubInfo)
copy(buffer[n:], supPrivInfo)
hasher := hash.New()
return &concatKDF{
z: z,
info: buffer,
hasher: hasher,
cache: []byte{},
i: 1,
}
}
func (ctx *concatKDF) Read(out []byte) (int, error) {
copied := copy(out, ctx.cache)
ctx.cache = ctx.cache[copied:]
for copied < len(out) {
ctx.hasher.Reset()
// Write on a hash.Hash never fails
_ = binary.Write(ctx.hasher, binary.BigEndian, ctx.i)
_, _ = ctx.hasher.Write(ctx.z)
_, _ = ctx.hasher.Write(ctx.info)
hash := ctx.hasher.Sum(nil)
chunkCopied := copy(out[copied:], hash)
copied += chunkCopied
ctx.cache = hash[chunkCopied:]
ctx.i++
}
return copied, nil
}

View File

@ -0,0 +1,148 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package josecipher
import (
"bytes"
"crypto"
"testing"
)
// Taken from: https://tools.ietf.org/id/draft-ietf-jose-json-web-algorithms-38.txt
func TestVectorConcatKDF(t *testing.T) {
z := []byte{
158, 86, 217, 29, 129, 113, 53, 211, 114, 131, 66, 131, 191, 132,
38, 156, 251, 49, 110, 163, 218, 128, 106, 72, 246, 218, 167, 121,
140, 254, 144, 196}
algID := []byte{0, 0, 0, 7, 65, 49, 50, 56, 71, 67, 77}
ptyUInfo := []byte{0, 0, 0, 5, 65, 108, 105, 99, 101}
ptyVInfo := []byte{0, 0, 0, 3, 66, 111, 98}
supPubInfo := []byte{0, 0, 0, 128}
supPrivInfo := []byte{}
expected := []byte{
86, 170, 141, 234, 248, 35, 109, 32, 92, 34, 40, 205, 113, 167, 16, 26}
ckdf := NewConcatKDF(crypto.SHA256, z, algID, ptyUInfo, ptyVInfo, supPubInfo, supPrivInfo)
out0 := make([]byte, 9)
out1 := make([]byte, 7)
read0, err := ckdf.Read(out0)
if err != nil {
t.Error("error when reading from concat kdf reader", err)
return
}
read1, err := ckdf.Read(out1)
if err != nil {
t.Error("error when reading from concat kdf reader", err)
return
}
if read0+read1 != len(out0)+len(out1) {
t.Error("did not receive enough bytes from concat kdf reader")
return
}
out := []byte{}
out = append(out, out0...)
out = append(out, out1...)
if bytes.Compare(out, expected) != 0 {
t.Error("did not receive expected output from concat kdf reader")
return
}
}
func TestCache(t *testing.T) {
z := []byte{
158, 86, 217, 29, 129, 113, 53, 211, 114, 131, 66, 131, 191, 132,
38, 156, 251, 49, 110, 163, 218, 128, 106, 72, 246, 218, 167, 121,
140, 254, 144, 196}
algID := []byte{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}
ptyUInfo := []byte{1, 2, 3, 4}
ptyVInfo := []byte{4, 3, 2, 1}
supPubInfo := []byte{}
supPrivInfo := []byte{}
outputs := [][]byte{}
// Read the same amount of data in different chunk sizes
for i := 10; i <= 100; i++ {
out := make([]byte, 1024)
reader := NewConcatKDF(crypto.SHA256, z, algID, ptyUInfo, ptyVInfo, supPubInfo, supPrivInfo)
for j := 0; j < 1024/i; j++ {
_, _ = reader.Read(out[j*i:])
}
outputs = append(outputs, out)
}
for i := range outputs {
if bytes.Compare(outputs[i], outputs[i%len(outputs)]) != 0 {
t.Error("not all outputs from KDF matched")
}
}
}
func benchmarkKDF(b *testing.B, total int) {
z := []byte{
158, 86, 217, 29, 129, 113, 53, 211, 114, 131, 66, 131, 191, 132,
38, 156, 251, 49, 110, 163, 218, 128, 106, 72, 246, 218, 167, 121,
140, 254, 144, 196}
algID := []byte{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}
ptyUInfo := []byte{1, 2, 3, 4}
ptyVInfo := []byte{4, 3, 2, 1}
supPubInfo := []byte{}
supPrivInfo := []byte{}
out := make([]byte, total)
reader := NewConcatKDF(crypto.SHA256, z, algID, ptyUInfo, ptyVInfo, supPubInfo, supPrivInfo)
b.ResetTimer()
b.SetBytes(int64(total))
for i := 0; i < b.N; i++ {
_, _ = reader.Read(out)
}
}
func BenchmarkConcatKDF_1k(b *testing.B) {
benchmarkKDF(b, 1024)
}
func BenchmarkConcatKDF_64k(b *testing.B) {
benchmarkKDF(b, 65536)
}
func BenchmarkConcatKDF_1MB(b *testing.B) {
benchmarkKDF(b, 1048576)
}
func BenchmarkConcatKDF_64MB(b *testing.B) {
benchmarkKDF(b, 67108864)
}

View File

@ -0,0 +1,51 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package josecipher
import (
"crypto"
"crypto/ecdsa"
"encoding/binary"
)
// DeriveECDHES derives a shared encryption key using ECDH/ConcatKDF as described in JWE/JWA.
func DeriveECDHES(alg string, apuData, apvData []byte, priv *ecdsa.PrivateKey, pub *ecdsa.PublicKey, size int) []byte {
// algId, partyUInfo, partyVInfo inputs must be prefixed with the length
algID := lengthPrefixed([]byte(alg))
ptyUInfo := lengthPrefixed(apuData)
ptyVInfo := lengthPrefixed(apvData)
// suppPubInfo is the encoded length of the output size in bits
supPubInfo := make([]byte, 4)
binary.BigEndian.PutUint32(supPubInfo, uint32(size)*8)
z, _ := priv.PublicKey.Curve.ScalarMult(pub.X, pub.Y, priv.D.Bytes())
reader := NewConcatKDF(crypto.SHA256, z.Bytes(), algID, ptyUInfo, ptyVInfo, supPubInfo, []byte{})
key := make([]byte, size)
// Read on the KDF will never fail
_, _ = reader.Read(key)
return key
}
func lengthPrefixed(data []byte) []byte {
out := make([]byte, len(data)+4)
binary.BigEndian.PutUint32(out, uint32(len(data)))
copy(out[4:], data)
return out
}

View File

@ -0,0 +1,98 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package josecipher
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"encoding/base64"
"math/big"
"testing"
)
// Example keys from JWA, Appendix C
var aliceKey = &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: elliptic.P256(),
X: fromBase64Int("gI0GAILBdu7T53akrFmMyGcsF3n5dO7MmwNBHKW5SV0="),
Y: fromBase64Int("SLW_xSffzlPWrHEVI30DHM_4egVwt3NQqeUD7nMFpps="),
},
D: fromBase64Int("0_NxaRPUMQoAJt50Gz8YiTr8gRTwyEaCumd-MToTmIo="),
}
var bobKey = &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: elliptic.P256(),
X: fromBase64Int("weNJy2HscCSM6AEDTDg04biOvhFhyyWvOHQfeF_PxMQ="),
Y: fromBase64Int("e8lnCO-AlStT-NJVX-crhB7QRYhiix03illJOVAOyck="),
},
D: fromBase64Int("VEmDZpDXXK8p8N0Cndsxs924q6nS1RXFASRl6BfUqdw="),
}
// Build big int from base64-encoded string. Strips whitespace (for testing).
func fromBase64Int(data string) *big.Int {
val, err := base64.URLEncoding.DecodeString(data)
if err != nil {
panic("Invalid test data")
}
return new(big.Int).SetBytes(val)
}
func TestVectorECDHES(t *testing.T) {
apuData := []byte("Alice")
apvData := []byte("Bob")
expected := []byte{
86, 170, 141, 234, 248, 35, 109, 32, 92, 34, 40, 205, 113, 167, 16, 26}
output := DeriveECDHES("A128GCM", apuData, apvData, bobKey, &aliceKey.PublicKey, 16)
if bytes.Compare(output, expected) != 0 {
t.Error("output did not match what we expect, got", output, "wanted", expected)
}
}
func BenchmarkECDHES_128(b *testing.B) {
apuData := []byte("APU")
apvData := []byte("APV")
b.ResetTimer()
for i := 0; i < b.N; i++ {
DeriveECDHES("ID", apuData, apvData, bobKey, &aliceKey.PublicKey, 16)
}
}
func BenchmarkECDHES_192(b *testing.B) {
apuData := []byte("APU")
apvData := []byte("APV")
b.ResetTimer()
for i := 0; i < b.N; i++ {
DeriveECDHES("ID", apuData, apvData, bobKey, &aliceKey.PublicKey, 24)
}
}
func BenchmarkECDHES_256(b *testing.B) {
apuData := []byte("APU")
apvData := []byte("APV")
b.ResetTimer()
for i := 0; i < b.N; i++ {
DeriveECDHES("ID", apuData, apvData, bobKey, &aliceKey.PublicKey, 32)
}
}

View File

@ -0,0 +1,109 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package josecipher
import (
"crypto/cipher"
"crypto/subtle"
"encoding/binary"
"errors"
)
var defaultIV = []byte{0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6}
// KeyWrap implements NIST key wrapping; it wraps a content encryption key (cek) with the given block cipher.
func KeyWrap(block cipher.Block, cek []byte) ([]byte, error) {
if len(cek)%8 != 0 {
return nil, errors.New("square/go-jose: key wrap input must be 8 byte blocks")
}
n := len(cek) / 8
r := make([][]byte, n)
for i := range r {
r[i] = make([]byte, 8)
copy(r[i], cek[i*8:])
}
buffer := make([]byte, 16)
tBytes := make([]byte, 8)
copy(buffer, defaultIV)
for t := 0; t < 6*n; t++ {
copy(buffer[8:], r[t%n])
block.Encrypt(buffer, buffer)
binary.BigEndian.PutUint64(tBytes, uint64(t+1))
for i := 0; i < 8; i++ {
buffer[i] = buffer[i] ^ tBytes[i]
}
copy(r[t%n], buffer[8:])
}
out := make([]byte, (n+1)*8)
copy(out, buffer[:8])
for i := range r {
copy(out[(i+1)*8:], r[i])
}
return out, nil
}
// KeyUnwrap implements NIST key unwrapping; it unwraps a content encryption key (cek) with the given block cipher.
func KeyUnwrap(block cipher.Block, ciphertext []byte) ([]byte, error) {
if len(ciphertext)%8 != 0 {
return nil, errors.New("square/go-jose: key wrap input must be 8 byte blocks")
}
n := (len(ciphertext) / 8) - 1
r := make([][]byte, n)
for i := range r {
r[i] = make([]byte, 8)
copy(r[i], ciphertext[(i+1)*8:])
}
buffer := make([]byte, 16)
tBytes := make([]byte, 8)
copy(buffer[:8], ciphertext[:8])
for t := 6*n - 1; t >= 0; t-- {
binary.BigEndian.PutUint64(tBytes, uint64(t+1))
for i := 0; i < 8; i++ {
buffer[i] = buffer[i] ^ tBytes[i]
}
copy(buffer[8:], r[t%n])
block.Decrypt(buffer, buffer)
copy(r[t%n], buffer[8:])
}
if subtle.ConstantTimeCompare(buffer[:8], defaultIV) == 0 {
return nil, errors.New("square/go-jose: failed to unwrap key")
}
out := make([]byte, n*8)
for i := range r {
copy(out[i*8:], r[i])
}
return out, nil
}

View File

@ -0,0 +1,133 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package josecipher
import (
"bytes"
"crypto/aes"
"encoding/hex"
"testing"
)
func TestAesKeyWrap(t *testing.T) {
// Test vectors from: http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf
kek0, _ := hex.DecodeString("000102030405060708090A0B0C0D0E0F")
cek0, _ := hex.DecodeString("00112233445566778899AABBCCDDEEFF")
expected0, _ := hex.DecodeString("1FA68B0A8112B447AEF34BD8FB5A7B829D3E862371D2CFE5")
kek1, _ := hex.DecodeString("000102030405060708090A0B0C0D0E0F1011121314151617")
cek1, _ := hex.DecodeString("00112233445566778899AABBCCDDEEFF")
expected1, _ := hex.DecodeString("96778B25AE6CA435F92B5B97C050AED2468AB8A17AD84E5D")
kek2, _ := hex.DecodeString("000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F")
cek2, _ := hex.DecodeString("00112233445566778899AABBCCDDEEFF0001020304050607")
expected2, _ := hex.DecodeString("A8F9BC1612C68B3FF6E6F4FBE30E71E4769C8B80A32CB8958CD5D17D6B254DA1")
block0, _ := aes.NewCipher(kek0)
block1, _ := aes.NewCipher(kek1)
block2, _ := aes.NewCipher(kek2)
out0, _ := KeyWrap(block0, cek0)
out1, _ := KeyWrap(block1, cek1)
out2, _ := KeyWrap(block2, cek2)
if bytes.Compare(out0, expected0) != 0 {
t.Error("output 0 not as expected, got", out0, "wanted", expected0)
}
if bytes.Compare(out1, expected1) != 0 {
t.Error("output 1 not as expected, got", out1, "wanted", expected1)
}
if bytes.Compare(out2, expected2) != 0 {
t.Error("output 2 not as expected, got", out2, "wanted", expected2)
}
unwrap0, _ := KeyUnwrap(block0, out0)
unwrap1, _ := KeyUnwrap(block1, out1)
unwrap2, _ := KeyUnwrap(block2, out2)
if bytes.Compare(unwrap0, cek0) != 0 {
t.Error("key unwrap did not return original input, got", unwrap0, "wanted", cek0)
}
if bytes.Compare(unwrap1, cek1) != 0 {
t.Error("key unwrap did not return original input, got", unwrap1, "wanted", cek1)
}
if bytes.Compare(unwrap2, cek2) != 0 {
t.Error("key unwrap did not return original input, got", unwrap2, "wanted", cek2)
}
}
func TestAesKeyWrapInvalid(t *testing.T) {
kek, _ := hex.DecodeString("000102030405060708090A0B0C0D0E0F")
// Invalid unwrap input (bit flipped)
input0, _ := hex.DecodeString("1EA68C1A8112B447AEF34BD8FB5A7B828D3E862371D2CFE5")
block, _ := aes.NewCipher(kek)
_, err := KeyUnwrap(block, input0)
if err == nil {
t.Error("key unwrap failed to detect invalid input")
}
// Invalid unwrap input (truncated)
input1, _ := hex.DecodeString("1EA68C1A8112B447AEF34BD8FB5A7B828D3E862371D2CF")
_, err = KeyUnwrap(block, input1)
if err == nil {
t.Error("key unwrap failed to detect truncated input")
}
// Invalid wrap input (not multiple of 8)
input2, _ := hex.DecodeString("0123456789ABCD")
_, err = KeyWrap(block, input2)
if err == nil {
t.Error("key wrap accepted invalid input")
}
}
func BenchmarkAesKeyWrap(b *testing.B) {
kek, _ := hex.DecodeString("000102030405060708090A0B0C0D0E0F")
key, _ := hex.DecodeString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF")
block, _ := aes.NewCipher(kek)
b.ResetTimer()
for i := 0; i < b.N; i++ {
KeyWrap(block, key)
}
}
func BenchmarkAesKeyUnwrap(b *testing.B) {
kek, _ := hex.DecodeString("000102030405060708090A0B0C0D0E0F")
input, _ := hex.DecodeString("1FA68B0A8112B447AEF34BD8FB5A7B829D3E862371D2CFE5")
block, _ := aes.NewCipher(kek)
b.ResetTimer()
for i := 0; i < b.N; i++ {
KeyUnwrap(block, input)
}
}

View File

@ -0,0 +1,349 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"crypto/ecdsa"
"crypto/rsa"
"fmt"
"reflect"
)
// Encrypter represents an encrypter which produces an encrypted JWE object.
type Encrypter interface {
Encrypt(plaintext []byte) (*JsonWebEncryption, error)
EncryptWithAuthData(plaintext []byte, aad []byte) (*JsonWebEncryption, error)
SetCompression(alg CompressionAlgorithm)
}
// MultiEncrypter represents an encrypter which supports multiple recipients.
type MultiEncrypter interface {
Encrypt(plaintext []byte) (*JsonWebEncryption, error)
EncryptWithAuthData(plaintext []byte, aad []byte) (*JsonWebEncryption, error)
SetCompression(alg CompressionAlgorithm)
AddRecipient(alg KeyAlgorithm, encryptionKey interface{}) error
}
// A generic content cipher
type contentCipher interface {
keySize() int
encrypt(cek []byte, aad, plaintext []byte) (*aeadParts, error)
decrypt(cek []byte, aad []byte, parts *aeadParts) ([]byte, error)
}
// A key generator (for generating/getting a CEK)
type keyGenerator interface {
keySize() int
genKey() ([]byte, rawHeader, error)
}
// A generic key encrypter
type keyEncrypter interface {
encryptKey(cek []byte, alg KeyAlgorithm) (recipientInfo, error) // Encrypt a key
}
// A generic key decrypter
type keyDecrypter interface {
decryptKey(headers rawHeader, recipient *recipientInfo, generator keyGenerator) ([]byte, error) // Decrypt a key
}
// A generic encrypter based on the given key encrypter and content cipher.
type genericEncrypter struct {
contentAlg ContentEncryption
compressionAlg CompressionAlgorithm
cipher contentCipher
recipients []recipientKeyInfo
keyGenerator keyGenerator
}
type recipientKeyInfo struct {
keyID string
keyAlg KeyAlgorithm
keyEncrypter keyEncrypter
}
// SetCompression sets a compression algorithm to be applied before encryption.
func (ctx *genericEncrypter) SetCompression(compressionAlg CompressionAlgorithm) {
ctx.compressionAlg = compressionAlg
}
// NewEncrypter creates an appropriate encrypter based on the key type
func NewEncrypter(alg KeyAlgorithm, enc ContentEncryption, encryptionKey interface{}) (Encrypter, error) {
encrypter := &genericEncrypter{
contentAlg: enc,
compressionAlg: NONE,
recipients: []recipientKeyInfo{},
cipher: getContentCipher(enc),
}
if encrypter.cipher == nil {
return nil, ErrUnsupportedAlgorithm
}
var keyID string
var rawKey interface{}
switch encryptionKey := encryptionKey.(type) {
case *JsonWebKey:
keyID = encryptionKey.KeyID
rawKey = encryptionKey.Key
default:
rawKey = encryptionKey
}
switch alg {
case DIRECT:
// Direct encryption mode must be treated differently
if reflect.TypeOf(rawKey) != reflect.TypeOf([]byte{}) {
return nil, ErrUnsupportedKeyType
}
encrypter.keyGenerator = staticKeyGenerator{
key: rawKey.([]byte),
}
recipient, _ := newSymmetricRecipient(alg, rawKey.([]byte))
if keyID != "" {
recipient.keyID = keyID
}
encrypter.recipients = []recipientKeyInfo{recipient}
return encrypter, nil
case ECDH_ES:
// ECDH-ES (w/o key wrapping) is similar to DIRECT mode
typeOf := reflect.TypeOf(rawKey)
if typeOf != reflect.TypeOf(&ecdsa.PublicKey{}) {
return nil, ErrUnsupportedKeyType
}
encrypter.keyGenerator = ecKeyGenerator{
size: encrypter.cipher.keySize(),
algID: string(enc),
publicKey: rawKey.(*ecdsa.PublicKey),
}
recipient, _ := newECDHRecipient(alg, rawKey.(*ecdsa.PublicKey))
if keyID != "" {
recipient.keyID = keyID
}
encrypter.recipients = []recipientKeyInfo{recipient}
return encrypter, nil
default:
// Can just add a standard recipient
encrypter.keyGenerator = randomKeyGenerator{
size: encrypter.cipher.keySize(),
}
err := encrypter.AddRecipient(alg, encryptionKey)
return encrypter, err
}
}
// NewMultiEncrypter creates a multi-encrypter based on the given parameters
func NewMultiEncrypter(enc ContentEncryption) (MultiEncrypter, error) {
cipher := getContentCipher(enc)
if cipher == nil {
return nil, ErrUnsupportedAlgorithm
}
encrypter := &genericEncrypter{
contentAlg: enc,
compressionAlg: NONE,
recipients: []recipientKeyInfo{},
cipher: cipher,
keyGenerator: randomKeyGenerator{
size: cipher.keySize(),
},
}
return encrypter, nil
}
func (ctx *genericEncrypter) AddRecipient(alg KeyAlgorithm, encryptionKey interface{}) (err error) {
var recipient recipientKeyInfo
switch alg {
case DIRECT, ECDH_ES:
return fmt.Errorf("square/go-jose: key algorithm '%s' not supported in multi-recipient mode", alg)
}
recipient, err = makeJWERecipient(alg, encryptionKey)
if err == nil {
ctx.recipients = append(ctx.recipients, recipient)
}
return err
}
func makeJWERecipient(alg KeyAlgorithm, encryptionKey interface{}) (recipientKeyInfo, error) {
switch encryptionKey := encryptionKey.(type) {
case *rsa.PublicKey:
return newRSARecipient(alg, encryptionKey)
case *ecdsa.PublicKey:
return newECDHRecipient(alg, encryptionKey)
case []byte:
return newSymmetricRecipient(alg, encryptionKey)
case *JsonWebKey:
recipient, err := makeJWERecipient(alg, encryptionKey.Key)
if err == nil && encryptionKey.KeyID != "" {
recipient.keyID = encryptionKey.KeyID
}
return recipient, err
default:
return recipientKeyInfo{}, ErrUnsupportedKeyType
}
}
// newDecrypter creates an appropriate decrypter based on the key type
func newDecrypter(decryptionKey interface{}) (keyDecrypter, error) {
switch decryptionKey := decryptionKey.(type) {
case *rsa.PrivateKey:
return &rsaDecrypterSigner{
privateKey: decryptionKey,
}, nil
case *ecdsa.PrivateKey:
return &ecDecrypterSigner{
privateKey: decryptionKey,
}, nil
case []byte:
return &symmetricKeyCipher{
key: decryptionKey,
}, nil
case *JsonWebKey:
return newDecrypter(decryptionKey.Key)
default:
return nil, ErrUnsupportedKeyType
}
}
// Implementation of encrypt method producing a JWE object.
func (ctx *genericEncrypter) Encrypt(plaintext []byte) (*JsonWebEncryption, error) {
return ctx.EncryptWithAuthData(plaintext, nil)
}
// Implementation of encrypt method producing a JWE object.
func (ctx *genericEncrypter) EncryptWithAuthData(plaintext, aad []byte) (*JsonWebEncryption, error) {
obj := &JsonWebEncryption{}
obj.aad = aad
obj.protected = &rawHeader{
Enc: ctx.contentAlg,
}
obj.recipients = make([]recipientInfo, len(ctx.recipients))
if len(ctx.recipients) == 0 {
return nil, fmt.Errorf("square/go-jose: no recipients to encrypt to")
}
cek, headers, err := ctx.keyGenerator.genKey()
if err != nil {
return nil, err
}
obj.protected.merge(&headers)
for i, info := range ctx.recipients {
recipient, err := info.keyEncrypter.encryptKey(cek, info.keyAlg)
if err != nil {
return nil, err
}
recipient.header.Alg = string(info.keyAlg)
if info.keyID != "" {
recipient.header.Kid = info.keyID
}
obj.recipients[i] = recipient
}
if len(ctx.recipients) == 1 {
// Move per-recipient headers into main protected header if there's
// only a single recipient.
obj.protected.merge(obj.recipients[0].header)
obj.recipients[0].header = nil
}
if ctx.compressionAlg != NONE {
plaintext, err = compress(ctx.compressionAlg, plaintext)
if err != nil {
return nil, err
}
obj.protected.Zip = ctx.compressionAlg
}
authData := obj.computeAuthData()
parts, err := ctx.cipher.encrypt(cek, authData, plaintext)
if err != nil {
return nil, err
}
obj.iv = parts.iv
obj.ciphertext = parts.ciphertext
obj.tag = parts.tag
return obj, nil
}
// Decrypt and validate the object and return the plaintext.
func (obj JsonWebEncryption) Decrypt(decryptionKey interface{}) ([]byte, error) {
headers := obj.mergedHeaders(nil)
if len(headers.Crit) > 0 {
return nil, fmt.Errorf("square/go-jose: unsupported crit header")
}
decrypter, err := newDecrypter(decryptionKey)
if err != nil {
return nil, err
}
cipher := getContentCipher(headers.Enc)
if cipher == nil {
return nil, fmt.Errorf("square/go-jose: unsupported enc value '%s'", string(headers.Enc))
}
generator := randomKeyGenerator{
size: cipher.keySize(),
}
parts := &aeadParts{
iv: obj.iv,
ciphertext: obj.ciphertext,
tag: obj.tag,
}
authData := obj.computeAuthData()
var plaintext []byte
for _, recipient := range obj.recipients {
recipientHeaders := obj.mergedHeaders(&recipient)
cek, err := decrypter.decryptKey(recipientHeaders, &recipient, generator)
if err == nil {
// Found a valid CEK -- let's try to decrypt.
plaintext, err = cipher.decrypt(cek, authData, parts)
if err == nil {
break
}
}
}
if plaintext == nil {
return nil, ErrCryptoFailure
}
// The "zip" header paramter may only be present in the protected header.
if obj.protected.Zip != "" {
plaintext, err = decompress(obj.protected.Zip, plaintext)
}
return plaintext, err
}

View File

@ -0,0 +1,784 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"fmt"
"io"
"testing"
)
// We generate only a single RSA and EC key for testing, speeds up tests.
var rsaTestKey, _ = rsa.GenerateKey(rand.Reader, 2048)
var ecTestKey256, _ = ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
var ecTestKey384, _ = ecdsa.GenerateKey(elliptic.P384(), rand.Reader)
var ecTestKey521, _ = ecdsa.GenerateKey(elliptic.P521(), rand.Reader)
func RoundtripJWE(keyAlg KeyAlgorithm, encAlg ContentEncryption, compressionAlg CompressionAlgorithm, serializer func(*JsonWebEncryption) (string, error), corrupter func(*JsonWebEncryption) bool, aad []byte, encryptionKey interface{}, decryptionKey interface{}) error {
enc, err := NewEncrypter(keyAlg, encAlg, encryptionKey)
if err != nil {
return fmt.Errorf("error on new encrypter: %s", err)
}
enc.SetCompression(compressionAlg)
input := []byte("Lorem ipsum dolor sit amet")
obj, err := enc.EncryptWithAuthData(input, aad)
if err != nil {
return fmt.Errorf("error in encrypt: %s", err)
}
msg, err := serializer(obj)
if err != nil {
return fmt.Errorf("error in serializer: %s", err)
}
parsed, err := ParseEncrypted(msg)
if err != nil {
return fmt.Errorf("error in parse: %s, on msg '%s'", err, msg)
}
// (Maybe) mangle object
skip := corrupter(parsed)
if skip {
return fmt.Errorf("corrupter indicated message should be skipped")
}
if bytes.Compare(parsed.GetAuthData(), aad) != 0 {
return fmt.Errorf("auth data in parsed object does not match")
}
output, err := parsed.Decrypt(decryptionKey)
if err != nil {
return fmt.Errorf("error on decrypt: %s", err)
}
if bytes.Compare(input, output) != 0 {
return fmt.Errorf("Decrypted output does not match input, got '%s' but wanted '%s'", output, input)
}
return nil
}
func TestRoundtripsJWE(t *testing.T) {
// Test matrix
keyAlgs := []KeyAlgorithm{
DIRECT, ECDH_ES, ECDH_ES_A128KW, ECDH_ES_A192KW, ECDH_ES_A256KW, A128KW, A192KW, A256KW,
RSA1_5, RSA_OAEP, RSA_OAEP_256, A128GCMKW, A192GCMKW, A256GCMKW}
encAlgs := []ContentEncryption{A128GCM, A192GCM, A256GCM, A128CBC_HS256, A192CBC_HS384, A256CBC_HS512}
zipAlgs := []CompressionAlgorithm{NONE, DEFLATE}
serializers := []func(*JsonWebEncryption) (string, error){
func(obj *JsonWebEncryption) (string, error) { return obj.CompactSerialize() },
func(obj *JsonWebEncryption) (string, error) { return obj.FullSerialize(), nil },
}
corrupter := func(obj *JsonWebEncryption) bool { return false }
// Note: can't use AAD with compact serialization
aads := [][]byte{
nil,
[]byte("Ut enim ad minim veniam"),
}
// Test all different configurations
for _, alg := range keyAlgs {
for _, enc := range encAlgs {
for _, key := range generateTestKeys(alg, enc) {
for _, zip := range zipAlgs {
for i, serializer := range serializers {
err := RoundtripJWE(alg, enc, zip, serializer, corrupter, aads[i], key.enc, key.dec)
if err != nil {
t.Error(err, alg, enc, zip, i)
}
}
}
}
}
}
}
func TestRoundtripsJWECorrupted(t *testing.T) {
// Test matrix
keyAlgs := []KeyAlgorithm{DIRECT, ECDH_ES, ECDH_ES_A128KW, A128KW, RSA1_5, RSA_OAEP, RSA_OAEP_256, A128GCMKW}
encAlgs := []ContentEncryption{A128GCM, A192GCM, A256GCM, A128CBC_HS256, A192CBC_HS384, A256CBC_HS512}
zipAlgs := []CompressionAlgorithm{NONE, DEFLATE}
serializers := []func(*JsonWebEncryption) (string, error){
func(obj *JsonWebEncryption) (string, error) { return obj.CompactSerialize() },
func(obj *JsonWebEncryption) (string, error) { return obj.FullSerialize(), nil },
}
bitflip := func(slice []byte) bool {
if len(slice) > 0 {
slice[0] ^= 0xFF
return false
}
return true
}
corrupters := []func(*JsonWebEncryption) bool{
func(obj *JsonWebEncryption) bool {
// Set invalid ciphertext
return bitflip(obj.ciphertext)
},
func(obj *JsonWebEncryption) bool {
// Set invalid auth tag
return bitflip(obj.tag)
},
func(obj *JsonWebEncryption) bool {
// Set invalid AAD
return bitflip(obj.aad)
},
func(obj *JsonWebEncryption) bool {
// Mess with encrypted key
return bitflip(obj.recipients[0].encryptedKey)
},
func(obj *JsonWebEncryption) bool {
// Mess with GCM-KW auth tag
return bitflip(obj.protected.Tag.bytes())
},
}
// Note: can't use AAD with compact serialization
aads := [][]byte{
nil,
[]byte("Ut enim ad minim veniam"),
}
// Test all different configurations
for _, alg := range keyAlgs {
for _, enc := range encAlgs {
for _, key := range generateTestKeys(alg, enc) {
for _, zip := range zipAlgs {
for i, serializer := range serializers {
for j, corrupter := range corrupters {
err := RoundtripJWE(alg, enc, zip, serializer, corrupter, aads[i], key.enc, key.dec)
if err == nil {
t.Error("failed to detect corrupt data", err, alg, enc, zip, i, j)
}
}
}
}
}
}
}
}
func TestEncrypterWithJWKAndKeyID(t *testing.T) {
enc, err := NewEncrypter(A128KW, A128GCM, &JsonWebKey{
KeyID: "test-id",
Key: []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
})
if err != nil {
t.Error(err)
}
ciphertext, _ := enc.Encrypt([]byte("Lorem ipsum dolor sit amet"))
serialized1, _ := ciphertext.CompactSerialize()
serialized2 := ciphertext.FullSerialize()
parsed1, _ := ParseEncrypted(serialized1)
parsed2, _ := ParseEncrypted(serialized2)
if parsed1.Header.KeyID != "test-id" {
t.Errorf("expected message to have key id from JWK, but found '%s' instead", parsed1.Header.KeyID)
}
if parsed2.Header.KeyID != "test-id" {
t.Errorf("expected message to have key id from JWK, but found '%s' instead", parsed2.Header.KeyID)
}
}
func TestEncrypterWithBrokenRand(t *testing.T) {
keyAlgs := []KeyAlgorithm{ECDH_ES_A128KW, A128KW, RSA1_5, RSA_OAEP, RSA_OAEP_256, A128GCMKW}
encAlgs := []ContentEncryption{A128GCM, A192GCM, A256GCM, A128CBC_HS256, A192CBC_HS384, A256CBC_HS512}
serializer := func(obj *JsonWebEncryption) (string, error) { return obj.CompactSerialize() }
corrupter := func(obj *JsonWebEncryption) bool { return false }
// Break rand reader
readers := []func() io.Reader{
// Totally broken
func() io.Reader { return bytes.NewReader([]byte{}) },
// Not enough bytes
func() io.Reader { return io.LimitReader(rand.Reader, 20) },
}
defer resetRandReader()
for _, alg := range keyAlgs {
for _, enc := range encAlgs {
for _, key := range generateTestKeys(alg, enc) {
for i, getReader := range readers {
randReader = getReader()
err := RoundtripJWE(alg, enc, NONE, serializer, corrupter, nil, key.enc, key.dec)
if err == nil {
t.Error("encrypter should fail if rand is broken", i)
}
}
}
}
}
}
func TestNewEncrypterErrors(t *testing.T) {
_, err := NewEncrypter("XYZ", "XYZ", nil)
if err == nil {
t.Error("was able to instantiate encrypter with invalid cipher")
}
_, err = NewMultiEncrypter("XYZ")
if err == nil {
t.Error("was able to instantiate multi-encrypter with invalid cipher")
}
_, err = NewEncrypter(DIRECT, A128GCM, nil)
if err == nil {
t.Error("was able to instantiate encrypter with invalid direct key")
}
_, err = NewEncrypter(ECDH_ES, A128GCM, nil)
if err == nil {
t.Error("was able to instantiate encrypter with invalid EC key")
}
}
func TestMultiRecipientJWE(t *testing.T) {
enc, err := NewMultiEncrypter(A128GCM)
if err != nil {
panic(err)
}
err = enc.AddRecipient(RSA_OAEP, &rsaTestKey.PublicKey)
if err != nil {
t.Error("error when adding RSA recipient", err)
}
sharedKey := []byte{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
}
err = enc.AddRecipient(A256GCMKW, sharedKey)
if err != nil {
t.Error("error when adding AES recipient: ", err)
return
}
input := []byte("Lorem ipsum dolor sit amet")
obj, err := enc.Encrypt(input)
if err != nil {
t.Error("error in encrypt: ", err)
return
}
msg := obj.FullSerialize()
parsed, err := ParseEncrypted(msg)
if err != nil {
t.Error("error in parse: ", err)
return
}
output, err := parsed.Decrypt(rsaTestKey)
if err != nil {
t.Error("error on decrypt with RSA: ", err)
return
}
if bytes.Compare(input, output) != 0 {
t.Error("Decrypted output does not match input: ", output, input)
return
}
output, err = parsed.Decrypt(sharedKey)
if err != nil {
t.Error("error on decrypt with AES: ", err)
return
}
if bytes.Compare(input, output) != 0 {
t.Error("Decrypted output does not match input", output, input)
return
}
}
func TestMultiRecipientErrors(t *testing.T) {
enc, err := NewMultiEncrypter(A128GCM)
if err != nil {
panic(err)
}
input := []byte("Lorem ipsum dolor sit amet")
_, err = enc.Encrypt(input)
if err == nil {
t.Error("should fail when encrypting to zero recipients")
}
err = enc.AddRecipient(DIRECT, nil)
if err == nil {
t.Error("should reject DIRECT mode when encrypting to multiple recipients")
}
err = enc.AddRecipient(ECDH_ES, nil)
if err == nil {
t.Error("should reject ECDH_ES mode when encrypting to multiple recipients")
}
err = enc.AddRecipient(RSA1_5, nil)
if err == nil {
t.Error("should reject invalid recipient key")
}
}
type testKey struct {
enc, dec interface{}
}
func symmetricTestKey(size int) []testKey {
key, _, _ := randomKeyGenerator{size: size}.genKey()
return []testKey{
testKey{
enc: key,
dec: key,
},
testKey{
enc: &JsonWebKey{KeyID: "test", Key: key},
dec: &JsonWebKey{KeyID: "test", Key: key},
},
}
}
func generateTestKeys(keyAlg KeyAlgorithm, encAlg ContentEncryption) []testKey {
switch keyAlg {
case DIRECT:
return symmetricTestKey(getContentCipher(encAlg).keySize())
case ECDH_ES, ECDH_ES_A128KW, ECDH_ES_A192KW, ECDH_ES_A256KW:
return []testKey{
testKey{
dec: ecTestKey256,
enc: &ecTestKey256.PublicKey,
},
testKey{
dec: ecTestKey384,
enc: &ecTestKey384.PublicKey,
},
testKey{
dec: ecTestKey521,
enc: &ecTestKey521.PublicKey,
},
testKey{
dec: &JsonWebKey{KeyID: "test", Key: ecTestKey256},
enc: &JsonWebKey{KeyID: "test", Key: &ecTestKey256.PublicKey},
},
}
case A128GCMKW, A128KW:
return symmetricTestKey(16)
case A192GCMKW, A192KW:
return symmetricTestKey(24)
case A256GCMKW, A256KW:
return symmetricTestKey(32)
case RSA1_5, RSA_OAEP, RSA_OAEP_256:
return []testKey{testKey{
dec: rsaTestKey,
enc: &rsaTestKey.PublicKey,
}}
}
panic("Must update test case")
}
func RunRoundtripsJWE(b *testing.B, alg KeyAlgorithm, enc ContentEncryption, zip CompressionAlgorithm, priv, pub interface{}) {
serializer := func(obj *JsonWebEncryption) (string, error) {
return obj.CompactSerialize()
}
corrupter := func(obj *JsonWebEncryption) bool { return false }
b.ResetTimer()
for i := 0; i < b.N; i++ {
err := RoundtripJWE(alg, enc, zip, serializer, corrupter, nil, pub, priv)
if err != nil {
b.Error(err)
}
}
}
var (
chunks = map[string][]byte{
"1B": make([]byte, 1),
"64B": make([]byte, 64),
"1KB": make([]byte, 1024),
"64KB": make([]byte, 65536),
"1MB": make([]byte, 1048576),
"64MB": make([]byte, 67108864),
}
symKey, _, _ = randomKeyGenerator{size: 32}.genKey()
encrypters = map[string]Encrypter{
"OAEPAndGCM": mustEncrypter(RSA_OAEP, A128GCM, &rsaTestKey.PublicKey),
"PKCSAndGCM": mustEncrypter(RSA1_5, A128GCM, &rsaTestKey.PublicKey),
"OAEPAndCBC": mustEncrypter(RSA_OAEP, A128CBC_HS256, &rsaTestKey.PublicKey),
"PKCSAndCBC": mustEncrypter(RSA1_5, A128CBC_HS256, &rsaTestKey.PublicKey),
"DirectGCM128": mustEncrypter(DIRECT, A128GCM, symKey),
"DirectCBC128": mustEncrypter(DIRECT, A128CBC_HS256, symKey),
"DirectGCM256": mustEncrypter(DIRECT, A256GCM, symKey),
"DirectCBC256": mustEncrypter(DIRECT, A256CBC_HS512, symKey),
"AESKWAndGCM128": mustEncrypter(A128KW, A128GCM, symKey),
"AESKWAndCBC256": mustEncrypter(A256KW, A256GCM, symKey),
"ECDHOnP256AndGCM128": mustEncrypter(ECDH_ES, A128GCM, &ecTestKey256.PublicKey),
"ECDHOnP384AndGCM128": mustEncrypter(ECDH_ES, A128GCM, &ecTestKey384.PublicKey),
"ECDHOnP521AndGCM128": mustEncrypter(ECDH_ES, A128GCM, &ecTestKey521.PublicKey),
}
)
func BenchmarkEncrypt1BWithOAEPAndGCM(b *testing.B) { benchEncrypt("1B", "OAEPAndGCM", b) }
func BenchmarkEncrypt64BWithOAEPAndGCM(b *testing.B) { benchEncrypt("64B", "OAEPAndGCM", b) }
func BenchmarkEncrypt1KBWithOAEPAndGCM(b *testing.B) { benchEncrypt("1KB", "OAEPAndGCM", b) }
func BenchmarkEncrypt64KBWithOAEPAndGCM(b *testing.B) { benchEncrypt("64KB", "OAEPAndGCM", b) }
func BenchmarkEncrypt1MBWithOAEPAndGCM(b *testing.B) { benchEncrypt("1MB", "OAEPAndGCM", b) }
func BenchmarkEncrypt64MBWithOAEPAndGCM(b *testing.B) { benchEncrypt("64MB", "OAEPAndGCM", b) }
func BenchmarkEncrypt1BWithPKCSAndGCM(b *testing.B) { benchEncrypt("1B", "PKCSAndGCM", b) }
func BenchmarkEncrypt64BWithPKCSAndGCM(b *testing.B) { benchEncrypt("64B", "PKCSAndGCM", b) }
func BenchmarkEncrypt1KBWithPKCSAndGCM(b *testing.B) { benchEncrypt("1KB", "PKCSAndGCM", b) }
func BenchmarkEncrypt64KBWithPKCSAndGCM(b *testing.B) { benchEncrypt("64KB", "PKCSAndGCM", b) }
func BenchmarkEncrypt1MBWithPKCSAndGCM(b *testing.B) { benchEncrypt("1MB", "PKCSAndGCM", b) }
func BenchmarkEncrypt64MBWithPKCSAndGCM(b *testing.B) { benchEncrypt("64MB", "PKCSAndGCM", b) }
func BenchmarkEncrypt1BWithOAEPAndCBC(b *testing.B) { benchEncrypt("1B", "OAEPAndCBC", b) }
func BenchmarkEncrypt64BWithOAEPAndCBC(b *testing.B) { benchEncrypt("64B", "OAEPAndCBC", b) }
func BenchmarkEncrypt1KBWithOAEPAndCBC(b *testing.B) { benchEncrypt("1KB", "OAEPAndCBC", b) }
func BenchmarkEncrypt64KBWithOAEPAndCBC(b *testing.B) { benchEncrypt("64KB", "OAEPAndCBC", b) }
func BenchmarkEncrypt1MBWithOAEPAndCBC(b *testing.B) { benchEncrypt("1MB", "OAEPAndCBC", b) }
func BenchmarkEncrypt64MBWithOAEPAndCBC(b *testing.B) { benchEncrypt("64MB", "OAEPAndCBC", b) }
func BenchmarkEncrypt1BWithPKCSAndCBC(b *testing.B) { benchEncrypt("1B", "PKCSAndCBC", b) }
func BenchmarkEncrypt64BWithPKCSAndCBC(b *testing.B) { benchEncrypt("64B", "PKCSAndCBC", b) }
func BenchmarkEncrypt1KBWithPKCSAndCBC(b *testing.B) { benchEncrypt("1KB", "PKCSAndCBC", b) }
func BenchmarkEncrypt64KBWithPKCSAndCBC(b *testing.B) { benchEncrypt("64KB", "PKCSAndCBC", b) }
func BenchmarkEncrypt1MBWithPKCSAndCBC(b *testing.B) { benchEncrypt("1MB", "PKCSAndCBC", b) }
func BenchmarkEncrypt64MBWithPKCSAndCBC(b *testing.B) { benchEncrypt("64MB", "PKCSAndCBC", b) }
func BenchmarkEncrypt1BWithDirectGCM128(b *testing.B) { benchEncrypt("1B", "DirectGCM128", b) }
func BenchmarkEncrypt64BWithDirectGCM128(b *testing.B) { benchEncrypt("64B", "DirectGCM128", b) }
func BenchmarkEncrypt1KBWithDirectGCM128(b *testing.B) { benchEncrypt("1KB", "DirectGCM128", b) }
func BenchmarkEncrypt64KBWithDirectGCM128(b *testing.B) { benchEncrypt("64KB", "DirectGCM128", b) }
func BenchmarkEncrypt1MBWithDirectGCM128(b *testing.B) { benchEncrypt("1MB", "DirectGCM128", b) }
func BenchmarkEncrypt64MBWithDirectGCM128(b *testing.B) { benchEncrypt("64MB", "DirectGCM128", b) }
func BenchmarkEncrypt1BWithDirectCBC128(b *testing.B) { benchEncrypt("1B", "DirectCBC128", b) }
func BenchmarkEncrypt64BWithDirectCBC128(b *testing.B) { benchEncrypt("64B", "DirectCBC128", b) }
func BenchmarkEncrypt1KBWithDirectCBC128(b *testing.B) { benchEncrypt("1KB", "DirectCBC128", b) }
func BenchmarkEncrypt64KBWithDirectCBC128(b *testing.B) { benchEncrypt("64KB", "DirectCBC128", b) }
func BenchmarkEncrypt1MBWithDirectCBC128(b *testing.B) { benchEncrypt("1MB", "DirectCBC128", b) }
func BenchmarkEncrypt64MBWithDirectCBC128(b *testing.B) { benchEncrypt("64MB", "DirectCBC128", b) }
func BenchmarkEncrypt1BWithDirectGCM256(b *testing.B) { benchEncrypt("1B", "DirectGCM256", b) }
func BenchmarkEncrypt64BWithDirectGCM256(b *testing.B) { benchEncrypt("64B", "DirectGCM256", b) }
func BenchmarkEncrypt1KBWithDirectGCM256(b *testing.B) { benchEncrypt("1KB", "DirectGCM256", b) }
func BenchmarkEncrypt64KBWithDirectGCM256(b *testing.B) { benchEncrypt("64KB", "DirectGCM256", b) }
func BenchmarkEncrypt1MBWithDirectGCM256(b *testing.B) { benchEncrypt("1MB", "DirectGCM256", b) }
func BenchmarkEncrypt64MBWithDirectGCM256(b *testing.B) { benchEncrypt("64MB", "DirectGCM256", b) }
func BenchmarkEncrypt1BWithDirectCBC256(b *testing.B) { benchEncrypt("1B", "DirectCBC256", b) }
func BenchmarkEncrypt64BWithDirectCBC256(b *testing.B) { benchEncrypt("64B", "DirectCBC256", b) }
func BenchmarkEncrypt1KBWithDirectCBC256(b *testing.B) { benchEncrypt("1KB", "DirectCBC256", b) }
func BenchmarkEncrypt64KBWithDirectCBC256(b *testing.B) { benchEncrypt("64KB", "DirectCBC256", b) }
func BenchmarkEncrypt1MBWithDirectCBC256(b *testing.B) { benchEncrypt("1MB", "DirectCBC256", b) }
func BenchmarkEncrypt64MBWithDirectCBC256(b *testing.B) { benchEncrypt("64MB", "DirectCBC256", b) }
func BenchmarkEncrypt1BWithAESKWAndGCM128(b *testing.B) { benchEncrypt("1B", "AESKWAndGCM128", b) }
func BenchmarkEncrypt64BWithAESKWAndGCM128(b *testing.B) { benchEncrypt("64B", "AESKWAndGCM128", b) }
func BenchmarkEncrypt1KBWithAESKWAndGCM128(b *testing.B) { benchEncrypt("1KB", "AESKWAndGCM128", b) }
func BenchmarkEncrypt64KBWithAESKWAndGCM128(b *testing.B) { benchEncrypt("64KB", "AESKWAndGCM128", b) }
func BenchmarkEncrypt1MBWithAESKWAndGCM128(b *testing.B) { benchEncrypt("1MB", "AESKWAndGCM128", b) }
func BenchmarkEncrypt64MBWithAESKWAndGCM128(b *testing.B) { benchEncrypt("64MB", "AESKWAndGCM128", b) }
func BenchmarkEncrypt1BWithAESKWAndCBC256(b *testing.B) { benchEncrypt("1B", "AESKWAndCBC256", b) }
func BenchmarkEncrypt64BWithAESKWAndCBC256(b *testing.B) { benchEncrypt("64B", "AESKWAndCBC256", b) }
func BenchmarkEncrypt1KBWithAESKWAndCBC256(b *testing.B) { benchEncrypt("1KB", "AESKWAndCBC256", b) }
func BenchmarkEncrypt64KBWithAESKWAndCBC256(b *testing.B) { benchEncrypt("64KB", "AESKWAndCBC256", b) }
func BenchmarkEncrypt1MBWithAESKWAndCBC256(b *testing.B) { benchEncrypt("1MB", "AESKWAndCBC256", b) }
func BenchmarkEncrypt64MBWithAESKWAndCBC256(b *testing.B) { benchEncrypt("64MB", "AESKWAndCBC256", b) }
func BenchmarkEncrypt1BWithECDHOnP256AndGCM128(b *testing.B) {
benchEncrypt("1B", "ECDHOnP256AndGCM128", b)
}
func BenchmarkEncrypt64BWithECDHOnP256AndGCM128(b *testing.B) {
benchEncrypt("64B", "ECDHOnP256AndGCM128", b)
}
func BenchmarkEncrypt1KBWithECDHOnP256AndGCM128(b *testing.B) {
benchEncrypt("1KB", "ECDHOnP256AndGCM128", b)
}
func BenchmarkEncrypt64KBWithECDHOnP256AndGCM128(b *testing.B) {
benchEncrypt("64KB", "ECDHOnP256AndGCM128", b)
}
func BenchmarkEncrypt1MBWithECDHOnP256AndGCM128(b *testing.B) {
benchEncrypt("1MB", "ECDHOnP256AndGCM128", b)
}
func BenchmarkEncrypt64MBWithECDHOnP256AndGCM128(b *testing.B) {
benchEncrypt("64MB", "ECDHOnP256AndGCM128", b)
}
func BenchmarkEncrypt1BWithECDHOnP384AndGCM128(b *testing.B) {
benchEncrypt("1B", "ECDHOnP384AndGCM128", b)
}
func BenchmarkEncrypt64BWithECDHOnP384AndGCM128(b *testing.B) {
benchEncrypt("64B", "ECDHOnP384AndGCM128", b)
}
func BenchmarkEncrypt1KBWithECDHOnP384AndGCM128(b *testing.B) {
benchEncrypt("1KB", "ECDHOnP384AndGCM128", b)
}
func BenchmarkEncrypt64KBWithECDHOnP384AndGCM128(b *testing.B) {
benchEncrypt("64KB", "ECDHOnP384AndGCM128", b)
}
func BenchmarkEncrypt1MBWithECDHOnP384AndGCM128(b *testing.B) {
benchEncrypt("1MB", "ECDHOnP384AndGCM128", b)
}
func BenchmarkEncrypt64MBWithECDHOnP384AndGCM128(b *testing.B) {
benchEncrypt("64MB", "ECDHOnP384AndGCM128", b)
}
func BenchmarkEncrypt1BWithECDHOnP521AndGCM128(b *testing.B) {
benchEncrypt("1B", "ECDHOnP521AndGCM128", b)
}
func BenchmarkEncrypt64BWithECDHOnP521AndGCM128(b *testing.B) {
benchEncrypt("64B", "ECDHOnP521AndGCM128", b)
}
func BenchmarkEncrypt1KBWithECDHOnP521AndGCM128(b *testing.B) {
benchEncrypt("1KB", "ECDHOnP521AndGCM128", b)
}
func BenchmarkEncrypt64KBWithECDHOnP521AndGCM128(b *testing.B) {
benchEncrypt("64KB", "ECDHOnP521AndGCM128", b)
}
func BenchmarkEncrypt1MBWithECDHOnP521AndGCM128(b *testing.B) {
benchEncrypt("1MB", "ECDHOnP521AndGCM128", b)
}
func BenchmarkEncrypt64MBWithECDHOnP521AndGCM128(b *testing.B) {
benchEncrypt("64MB", "ECDHOnP521AndGCM128", b)
}
func benchEncrypt(chunkKey, primKey string, b *testing.B) {
data, ok := chunks[chunkKey]
if !ok {
b.Fatalf("unknown chunk size %s", chunkKey)
}
enc, ok := encrypters[primKey]
if !ok {
b.Fatalf("unknown encrypter %s", primKey)
}
b.SetBytes(int64(len(data)))
for i := 0; i < b.N; i++ {
enc.Encrypt(data)
}
}
var (
decryptionKeys = map[string]interface{}{
"OAEPAndGCM": rsaTestKey,
"PKCSAndGCM": rsaTestKey,
"OAEPAndCBC": rsaTestKey,
"PKCSAndCBC": rsaTestKey,
"DirectGCM128": symKey,
"DirectCBC128": symKey,
"DirectGCM256": symKey,
"DirectCBC256": symKey,
"AESKWAndGCM128": symKey,
"AESKWAndCBC256": symKey,
"ECDHOnP256AndGCM128": ecTestKey256,
"ECDHOnP384AndGCM128": ecTestKey384,
"ECDHOnP521AndGCM128": ecTestKey521,
}
)
func BenchmarkDecrypt1BWithOAEPAndGCM(b *testing.B) { benchDecrypt("1B", "OAEPAndGCM", b) }
func BenchmarkDecrypt64BWithOAEPAndGCM(b *testing.B) { benchDecrypt("64B", "OAEPAndGCM", b) }
func BenchmarkDecrypt1KBWithOAEPAndGCM(b *testing.B) { benchDecrypt("1KB", "OAEPAndGCM", b) }
func BenchmarkDecrypt64KBWithOAEPAndGCM(b *testing.B) { benchDecrypt("64KB", "OAEPAndGCM", b) }
func BenchmarkDecrypt1MBWithOAEPAndGCM(b *testing.B) { benchDecrypt("1MB", "OAEPAndGCM", b) }
func BenchmarkDecrypt64MBWithOAEPAndGCM(b *testing.B) { benchDecrypt("64MB", "OAEPAndGCM", b) }
func BenchmarkDecrypt1BWithPKCSAndGCM(b *testing.B) { benchDecrypt("1B", "PKCSAndGCM", b) }
func BenchmarkDecrypt64BWithPKCSAndGCM(b *testing.B) { benchDecrypt("64B", "PKCSAndGCM", b) }
func BenchmarkDecrypt1KBWithPKCSAndGCM(b *testing.B) { benchDecrypt("1KB", "PKCSAndGCM", b) }
func BenchmarkDecrypt64KBWithPKCSAndGCM(b *testing.B) { benchDecrypt("64KB", "PKCSAndGCM", b) }
func BenchmarkDecrypt1MBWithPKCSAndGCM(b *testing.B) { benchDecrypt("1MB", "PKCSAndGCM", b) }
func BenchmarkDecrypt64MBWithPKCSAndGCM(b *testing.B) { benchDecrypt("64MB", "PKCSAndGCM", b) }
func BenchmarkDecrypt1BWithOAEPAndCBC(b *testing.B) { benchDecrypt("1B", "OAEPAndCBC", b) }
func BenchmarkDecrypt64BWithOAEPAndCBC(b *testing.B) { benchDecrypt("64B", "OAEPAndCBC", b) }
func BenchmarkDecrypt1KBWithOAEPAndCBC(b *testing.B) { benchDecrypt("1KB", "OAEPAndCBC", b) }
func BenchmarkDecrypt64KBWithOAEPAndCBC(b *testing.B) { benchDecrypt("64KB", "OAEPAndCBC", b) }
func BenchmarkDecrypt1MBWithOAEPAndCBC(b *testing.B) { benchDecrypt("1MB", "OAEPAndCBC", b) }
func BenchmarkDecrypt64MBWithOAEPAndCBC(b *testing.B) { benchDecrypt("64MB", "OAEPAndCBC", b) }
func BenchmarkDecrypt1BWithPKCSAndCBC(b *testing.B) { benchDecrypt("1B", "PKCSAndCBC", b) }
func BenchmarkDecrypt64BWithPKCSAndCBC(b *testing.B) { benchDecrypt("64B", "PKCSAndCBC", b) }
func BenchmarkDecrypt1KBWithPKCSAndCBC(b *testing.B) { benchDecrypt("1KB", "PKCSAndCBC", b) }
func BenchmarkDecrypt64KBWithPKCSAndCBC(b *testing.B) { benchDecrypt("64KB", "PKCSAndCBC", b) }
func BenchmarkDecrypt1MBWithPKCSAndCBC(b *testing.B) { benchDecrypt("1MB", "PKCSAndCBC", b) }
func BenchmarkDecrypt64MBWithPKCSAndCBC(b *testing.B) { benchDecrypt("64MB", "PKCSAndCBC", b) }
func BenchmarkDecrypt1BWithDirectGCM128(b *testing.B) { benchDecrypt("1B", "DirectGCM128", b) }
func BenchmarkDecrypt64BWithDirectGCM128(b *testing.B) { benchDecrypt("64B", "DirectGCM128", b) }
func BenchmarkDecrypt1KBWithDirectGCM128(b *testing.B) { benchDecrypt("1KB", "DirectGCM128", b) }
func BenchmarkDecrypt64KBWithDirectGCM128(b *testing.B) { benchDecrypt("64KB", "DirectGCM128", b) }
func BenchmarkDecrypt1MBWithDirectGCM128(b *testing.B) { benchDecrypt("1MB", "DirectGCM128", b) }
func BenchmarkDecrypt64MBWithDirectGCM128(b *testing.B) { benchDecrypt("64MB", "DirectGCM128", b) }
func BenchmarkDecrypt1BWithDirectCBC128(b *testing.B) { benchDecrypt("1B", "DirectCBC128", b) }
func BenchmarkDecrypt64BWithDirectCBC128(b *testing.B) { benchDecrypt("64B", "DirectCBC128", b) }
func BenchmarkDecrypt1KBWithDirectCBC128(b *testing.B) { benchDecrypt("1KB", "DirectCBC128", b) }
func BenchmarkDecrypt64KBWithDirectCBC128(b *testing.B) { benchDecrypt("64KB", "DirectCBC128", b) }
func BenchmarkDecrypt1MBWithDirectCBC128(b *testing.B) { benchDecrypt("1MB", "DirectCBC128", b) }
func BenchmarkDecrypt64MBWithDirectCBC128(b *testing.B) { benchDecrypt("64MB", "DirectCBC128", b) }
func BenchmarkDecrypt1BWithDirectGCM256(b *testing.B) { benchDecrypt("1B", "DirectGCM256", b) }
func BenchmarkDecrypt64BWithDirectGCM256(b *testing.B) { benchDecrypt("64B", "DirectGCM256", b) }
func BenchmarkDecrypt1KBWithDirectGCM256(b *testing.B) { benchDecrypt("1KB", "DirectGCM256", b) }
func BenchmarkDecrypt64KBWithDirectGCM256(b *testing.B) { benchDecrypt("64KB", "DirectGCM256", b) }
func BenchmarkDecrypt1MBWithDirectGCM256(b *testing.B) { benchDecrypt("1MB", "DirectGCM256", b) }
func BenchmarkDecrypt64MBWithDirectGCM256(b *testing.B) { benchDecrypt("64MB", "DirectGCM256", b) }
func BenchmarkDecrypt1BWithDirectCBC256(b *testing.B) { benchDecrypt("1B", "DirectCBC256", b) }
func BenchmarkDecrypt64BWithDirectCBC256(b *testing.B) { benchDecrypt("64B", "DirectCBC256", b) }
func BenchmarkDecrypt1KBWithDirectCBC256(b *testing.B) { benchDecrypt("1KB", "DirectCBC256", b) }
func BenchmarkDecrypt64KBWithDirectCBC256(b *testing.B) { benchDecrypt("64KB", "DirectCBC256", b) }
func BenchmarkDecrypt1MBWithDirectCBC256(b *testing.B) { benchDecrypt("1MB", "DirectCBC256", b) }
func BenchmarkDecrypt64MBWithDirectCBC256(b *testing.B) { benchDecrypt("64MB", "DirectCBC256", b) }
func BenchmarkDecrypt1BWithAESKWAndGCM128(b *testing.B) { benchDecrypt("1B", "AESKWAndGCM128", b) }
func BenchmarkDecrypt64BWithAESKWAndGCM128(b *testing.B) { benchDecrypt("64B", "AESKWAndGCM128", b) }
func BenchmarkDecrypt1KBWithAESKWAndGCM128(b *testing.B) { benchDecrypt("1KB", "AESKWAndGCM128", b) }
func BenchmarkDecrypt64KBWithAESKWAndGCM128(b *testing.B) { benchDecrypt("64KB", "AESKWAndGCM128", b) }
func BenchmarkDecrypt1MBWithAESKWAndGCM128(b *testing.B) { benchDecrypt("1MB", "AESKWAndGCM128", b) }
func BenchmarkDecrypt64MBWithAESKWAndGCM128(b *testing.B) { benchDecrypt("64MB", "AESKWAndGCM128", b) }
func BenchmarkDecrypt1BWithAESKWAndCBC256(b *testing.B) { benchDecrypt("1B", "AESKWAndCBC256", b) }
func BenchmarkDecrypt64BWithAESKWAndCBC256(b *testing.B) { benchDecrypt("64B", "AESKWAndCBC256", b) }
func BenchmarkDecrypt1KBWithAESKWAndCBC256(b *testing.B) { benchDecrypt("1KB", "AESKWAndCBC256", b) }
func BenchmarkDecrypt64KBWithAESKWAndCBC256(b *testing.B) { benchDecrypt("64KB", "AESKWAndCBC256", b) }
func BenchmarkDecrypt1MBWithAESKWAndCBC256(b *testing.B) { benchDecrypt("1MB", "AESKWAndCBC256", b) }
func BenchmarkDecrypt64MBWithAESKWAndCBC256(b *testing.B) { benchDecrypt("64MB", "AESKWAndCBC256", b) }
func BenchmarkDecrypt1BWithECDHOnP256AndGCM128(b *testing.B) {
benchDecrypt("1B", "ECDHOnP256AndGCM128", b)
}
func BenchmarkDecrypt64BWithECDHOnP256AndGCM128(b *testing.B) {
benchDecrypt("64B", "ECDHOnP256AndGCM128", b)
}
func BenchmarkDecrypt1KBWithECDHOnP256AndGCM128(b *testing.B) {
benchDecrypt("1KB", "ECDHOnP256AndGCM128", b)
}
func BenchmarkDecrypt64KBWithECDHOnP256AndGCM128(b *testing.B) {
benchDecrypt("64KB", "ECDHOnP256AndGCM128", b)
}
func BenchmarkDecrypt1MBWithECDHOnP256AndGCM128(b *testing.B) {
benchDecrypt("1MB", "ECDHOnP256AndGCM128", b)
}
func BenchmarkDecrypt64MBWithECDHOnP256AndGCM128(b *testing.B) {
benchDecrypt("64MB", "ECDHOnP256AndGCM128", b)
}
func BenchmarkDecrypt1BWithECDHOnP384AndGCM128(b *testing.B) {
benchDecrypt("1B", "ECDHOnP384AndGCM128", b)
}
func BenchmarkDecrypt64BWithECDHOnP384AndGCM128(b *testing.B) {
benchDecrypt("64B", "ECDHOnP384AndGCM128", b)
}
func BenchmarkDecrypt1KBWithECDHOnP384AndGCM128(b *testing.B) {
benchDecrypt("1KB", "ECDHOnP384AndGCM128", b)
}
func BenchmarkDecrypt64KBWithECDHOnP384AndGCM128(b *testing.B) {
benchDecrypt("64KB", "ECDHOnP384AndGCM128", b)
}
func BenchmarkDecrypt1MBWithECDHOnP384AndGCM128(b *testing.B) {
benchDecrypt("1MB", "ECDHOnP384AndGCM128", b)
}
func BenchmarkDecrypt64MBWithECDHOnP384AndGCM128(b *testing.B) {
benchDecrypt("64MB", "ECDHOnP384AndGCM128", b)
}
func BenchmarkDecrypt1BWithECDHOnP521AndGCM128(b *testing.B) {
benchDecrypt("1B", "ECDHOnP521AndGCM128", b)
}
func BenchmarkDecrypt64BWithECDHOnP521AndGCM128(b *testing.B) {
benchDecrypt("64B", "ECDHOnP521AndGCM128", b)
}
func BenchmarkDecrypt1KBWithECDHOnP521AndGCM128(b *testing.B) {
benchDecrypt("1KB", "ECDHOnP521AndGCM128", b)
}
func BenchmarkDecrypt64KBWithECDHOnP521AndGCM128(b *testing.B) {
benchDecrypt("64KB", "ECDHOnP521AndGCM128", b)
}
func BenchmarkDecrypt1MBWithECDHOnP521AndGCM128(b *testing.B) {
benchDecrypt("1MB", "ECDHOnP521AndGCM128", b)
}
func BenchmarkDecrypt64MBWithECDHOnP521AndGCM128(b *testing.B) {
benchDecrypt("64MB", "ECDHOnP521AndGCM128", b)
}
func benchDecrypt(chunkKey, primKey string, b *testing.B) {
chunk, ok := chunks[chunkKey]
if !ok {
b.Fatalf("unknown chunk size %s", chunkKey)
}
enc, ok := encrypters[primKey]
if !ok {
b.Fatalf("unknown encrypter %s", primKey)
}
dec, ok := decryptionKeys[primKey]
if !ok {
b.Fatalf("unknown decryption key %s", primKey)
}
data, err := enc.Encrypt(chunk)
if err != nil {
b.Fatal(err)
}
b.SetBytes(int64(len(chunk)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
data.Decrypt(dec)
}
}
func mustEncrypter(keyAlg KeyAlgorithm, encAlg ContentEncryption, encryptionKey interface{}) Encrypter {
enc, err := NewEncrypter(keyAlg, encAlg, encryptionKey)
if err != nil {
panic(err)
}
return enc
}

26
Godeps/_workspace/src/github.com/square/go-jose/doc.go generated vendored Normal file
View File

@ -0,0 +1,26 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
Package jose aims to provide an implementation of the Javascript Object Signing
and Encryption set of standards. For the moment, it mainly focuses on
encryption and signing based on the JSON Web Encryption and JSON Web Signature
standards. The library supports both the compact and full serialization
formats, and has optional support for multiple recipients.
*/
package jose

View File

@ -0,0 +1,226 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"crypto/ecdsa"
"crypto/rand"
"crypto/rsa"
"fmt"
)
// Dummy encrypter for use in examples
var encrypter, _ = NewEncrypter(DIRECT, A128GCM, []byte{})
func Example_jWE() {
// Generate a public/private key pair to use for this example. The library
// also provides two utility functions (LoadPublicKey and LoadPrivateKey)
// that can be used to load keys from PEM/DER-encoded data.
privateKey, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
// Instantiate an encrypter using RSA-OAEP with AES128-GCM. An error would
// indicate that the selected algorithm(s) are not currently supported.
publicKey := &privateKey.PublicKey
encrypter, err := NewEncrypter(RSA_OAEP, A128GCM, publicKey)
if err != nil {
panic(err)
}
// Encrypt a sample plaintext. Calling the encrypter returns an encrypted
// JWE object, which can then be serialized for output afterwards. An error
// would indicate a problem in an underlying cryptographic primitive.
var plaintext = []byte("Lorem ipsum dolor sit amet")
object, err := encrypter.Encrypt(plaintext)
if err != nil {
panic(err)
}
// Serialize the encrypted object using the full serialization format.
// Alternatively you can also use the compact format here by calling
// object.CompactSerialize() instead.
serialized := object.FullSerialize()
// Parse the serialized, encrypted JWE object. An error would indicate that
// the given input did not represent a valid message.
object, err = ParseEncrypted(serialized)
if err != nil {
panic(err)
}
// Now we can decrypt and get back our original plaintext. An error here
// would indicate the the message failed to decrypt, e.g. because the auth
// tag was broken or the message was tampered with.
decrypted, err := object.Decrypt(privateKey)
if err != nil {
panic(err)
}
fmt.Printf(string(decrypted))
// output: Lorem ipsum dolor sit amet
}
func Example_jWS() {
// Generate a public/private key pair to use for this example. The library
// also provides two utility functions (LoadPublicKey and LoadPrivateKey)
// that can be used to load keys from PEM/DER-encoded data.
privateKey, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
panic(err)
}
// Instantiate a signer using RSASSA-PSS (SHA512) with the given private key.
signer, err := NewSigner(PS512, privateKey)
if err != nil {
panic(err)
}
// Sign a sample payload. Calling the signer returns a protected JWS object,
// which can then be serialized for output afterwards. An error would
// indicate a problem in an underlying cryptographic primitive.
var payload = []byte("Lorem ipsum dolor sit amet")
object, err := signer.Sign(payload)
if err != nil {
panic(err)
}
// Serialize the encrypted object using the full serialization format.
// Alternatively you can also use the compact format here by calling
// object.CompactSerialize() instead.
serialized := object.FullSerialize()
// Parse the serialized, protected JWS object. An error would indicate that
// the given input did not represent a valid message.
object, err = ParseSigned(serialized)
if err != nil {
panic(err)
}
// Now we can verify the signature on the payload. An error here would
// indicate the the message failed to verify, e.g. because the signature was
// broken or the message was tampered with.
output, err := object.Verify(&privateKey.PublicKey)
if err != nil {
panic(err)
}
fmt.Printf(string(output))
// output: Lorem ipsum dolor sit amet
}
func ExampleNewEncrypter_publicKey() {
var publicKey *rsa.PublicKey
// Instantiate an encrypter using RSA-OAEP with AES128-GCM.
NewEncrypter(RSA_OAEP, A128GCM, publicKey)
// Instantiate an encrypter using RSA-PKCS1v1.5 with AES128-CBC+HMAC.
NewEncrypter(RSA1_5, A128CBC_HS256, publicKey)
}
func ExampleNewEncrypter_symmetric() {
var sharedKey []byte
// Instantiate an encrypter using AES128-GCM with AES-GCM key wrap.
NewEncrypter(A128GCMKW, A128GCM, sharedKey)
// Instantiate an encrypter using AES256-GCM directly, w/o key wrapping.
NewEncrypter(DIRECT, A256GCM, sharedKey)
}
func ExampleNewSigner_publicKey() {
var rsaPrivateKey *rsa.PrivateKey
var ecdsaPrivateKey *ecdsa.PrivateKey
// Instantiate a signer using RSA-PKCS#1v1.5 with SHA-256.
NewSigner(RS256, rsaPrivateKey)
// Instantiate a signer using ECDSA with SHA-384.
NewSigner(ES384, ecdsaPrivateKey)
}
func ExampleNewSigner_symmetric() {
var sharedKey []byte
// Instantiate an signer using HMAC-SHA256.
NewSigner(HS256, sharedKey)
// Instantiate an signer using HMAC-SHA512.
NewSigner(HS512, sharedKey)
}
func ExampleNewMultiEncrypter() {
var publicKey *rsa.PublicKey
var sharedKey []byte
// Instantiate an encrypter using AES-GCM.
encrypter, err := NewMultiEncrypter(A128GCM)
if err != nil {
panic(err)
}
// Add a recipient using a shared key with AES-GCM key wap
err = encrypter.AddRecipient(A128GCMKW, sharedKey)
if err != nil {
panic(err)
}
// Add a recipient using an RSA public key with RSA-OAEP
err = encrypter.AddRecipient(RSA_OAEP, publicKey)
if err != nil {
panic(err)
}
}
func ExampleNewMultiSigner() {
var privateKey *rsa.PrivateKey
var sharedKey []byte
// Instantiate a signer for multiple recipients.
signer := NewMultiSigner()
// Add a recipient using a shared key with HMAC-SHA256
err := signer.AddRecipient(HS256, sharedKey)
if err != nil {
panic(err)
}
// Add a recipient using an RSA private key with RSASSA-PSS with SHA384
err = signer.AddRecipient(PS384, privateKey)
if err != nil {
panic(err)
}
}
func ExampleEncrypter_encrypt() {
// Encrypt a plaintext in order to get an encrypted JWE object.
var plaintext = []byte("This is a secret message")
encrypter.Encrypt(plaintext)
}
func ExampleEncrypter_encryptWithAuthData() {
// Encrypt a plaintext in order to get an encrypted JWE object. Also attach
// some additional authenticated data (AAD) to the object. Note that objects
// with attached AAD can only be represented using full serialization.
var plaintext = []byte("This is a secret message")
var aad = []byte("This is authenticated, but public data")
encrypter.EncryptWithAuthData(plaintext, aad)
}

View File

@ -0,0 +1,192 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"bytes"
"compress/flate"
"encoding/base64"
"encoding/binary"
"encoding/json"
"io"
"math/big"
"regexp"
"strings"
)
var stripWhitespaceRegex = regexp.MustCompile("\\s")
// Url-safe base64 encode that strips padding
func base64URLEncode(data []byte) string {
var result = base64.URLEncoding.EncodeToString(data)
return strings.TrimRight(result, "=")
}
// Url-safe base64 decoder that adds padding
func base64URLDecode(data string) ([]byte, error) {
var missing = (4 - len(data)%4) % 4
data += strings.Repeat("=", missing)
return base64.URLEncoding.DecodeString(data)
}
// Helper function to serialize known-good objects.
// Precondition: value is not a nil pointer.
func mustSerializeJSON(value interface{}) []byte {
out, err := json.Marshal(value)
if err != nil {
panic(err)
}
// We never want to serialize the top-level value "null," since it's not a
// valid JOSE message. But if a caller passes in a nil pointer to this method,
// json.Marshal will happily serialize it as the top-level value "null". If
// that value is then embedded in another operation, for instance by being
// base64-encoded and fed as input to a signing algorithm
// (https://github.com/square/go-jose/issues/22), the result will be
// incorrect. Because this method is intended for known-good objects, and a nil
// pointer is not a known-good object, we are free to panic in this case.
// Note: It's not possible to directly check whether the data pointed at by an
// interface is a nil pointer, so we do this hacky workaround.
// https://groups.google.com/forum/#!topic/golang-nuts/wnH302gBa4I
if string(out) == "null" {
panic("Tried to serialize a nil pointer.")
}
return out
}
// Strip all newlines and whitespace
func stripWhitespace(data string) string {
return stripWhitespaceRegex.ReplaceAllString(data, "")
}
// Perform compression based on algorithm
func compress(algorithm CompressionAlgorithm, input []byte) ([]byte, error) {
switch algorithm {
case DEFLATE:
return deflate(input)
default:
return nil, ErrUnsupportedAlgorithm
}
}
// Perform decompression based on algorithm
func decompress(algorithm CompressionAlgorithm, input []byte) ([]byte, error) {
switch algorithm {
case DEFLATE:
return inflate(input)
default:
return nil, ErrUnsupportedAlgorithm
}
}
// Compress with DEFLATE
func deflate(input []byte) ([]byte, error) {
output := new(bytes.Buffer)
// Writing to byte buffer, err is always nil
writer, _ := flate.NewWriter(output, 1)
_, _ = io.Copy(writer, bytes.NewBuffer(input))
err := writer.Close()
return output.Bytes(), err
}
// Decompress with DEFLATE
func inflate(input []byte) ([]byte, error) {
output := new(bytes.Buffer)
reader := flate.NewReader(bytes.NewBuffer(input))
_, err := io.Copy(output, reader)
if err != nil {
return nil, err
}
err = reader.Close()
return output.Bytes(), err
}
// byteBuffer represents a slice of bytes that can be serialized to url-safe base64.
type byteBuffer struct {
data []byte
}
func newBuffer(data []byte) *byteBuffer {
if data == nil {
return nil
}
return &byteBuffer{
data: data,
}
}
func newFixedSizeBuffer(data []byte, length int) *byteBuffer {
if len(data) > length {
panic("square/go-jose: invalid call to newFixedSizeBuffer (len(data) > length)")
}
pad := make([]byte, length-len(data))
return newBuffer(append(pad, data...))
}
func newBufferFromInt(num uint64) *byteBuffer {
data := make([]byte, 8)
binary.BigEndian.PutUint64(data, num)
return newBuffer(bytes.TrimLeft(data, "\x00"))
}
func (b *byteBuffer) MarshalJSON() ([]byte, error) {
return json.Marshal(b.base64())
}
func (b *byteBuffer) UnmarshalJSON(data []byte) error {
var encoded string
err := json.Unmarshal(data, &encoded)
if err != nil {
return err
}
if encoded == "" {
return nil
}
decoded, err := base64URLDecode(encoded)
if err != nil {
return err
}
*b = *newBuffer(decoded)
return nil
}
func (b *byteBuffer) base64() string {
return base64URLEncode(b.data)
}
func (b *byteBuffer) bytes() []byte {
// Handling nil here allows us to transparently handle nil slices when serializing.
if b == nil {
return nil
}
return b.data
}
func (b byteBuffer) bigInt() *big.Int {
return new(big.Int).SetBytes(b.data)
}
func (b byteBuffer) toInt() int {
return int(b.bigInt().Int64())
}

View File

@ -0,0 +1,173 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"bytes"
"strings"
"testing"
)
func TestBase64URLEncode(t *testing.T) {
// Test arrays with various sizes
if base64URLEncode([]byte{}) != "" {
t.Error("failed to encode empty array")
}
if base64URLEncode([]byte{0}) != "AA" {
t.Error("failed to encode [0x00]")
}
if base64URLEncode([]byte{0, 1}) != "AAE" {
t.Error("failed to encode [0x00, 0x01]")
}
if base64URLEncode([]byte{0, 1, 2}) != "AAEC" {
t.Error("failed to encode [0x00, 0x01, 0x02]")
}
if base64URLEncode([]byte{0, 1, 2, 3}) != "AAECAw" {
t.Error("failed to encode [0x00, 0x01, 0x02, 0x03]")
}
}
func TestBase64URLDecode(t *testing.T) {
// Test arrays with various sizes
val, err := base64URLDecode("")
if err != nil || !bytes.Equal(val, []byte{}) {
t.Error("failed to decode empty array")
}
val, err = base64URLDecode("AA")
if err != nil || !bytes.Equal(val, []byte{0}) {
t.Error("failed to decode [0x00]")
}
val, err = base64URLDecode("AAE")
if err != nil || !bytes.Equal(val, []byte{0, 1}) {
t.Error("failed to decode [0x00, 0x01]")
}
val, err = base64URLDecode("AAEC")
if err != nil || !bytes.Equal(val, []byte{0, 1, 2}) {
t.Error("failed to decode [0x00, 0x01, 0x02]")
}
val, err = base64URLDecode("AAECAw")
if err != nil || !bytes.Equal(val, []byte{0, 1, 2, 3}) {
t.Error("failed to decode [0x00, 0x01, 0x02, 0x03]")
}
}
func TestDeflateRoundtrip(t *testing.T) {
original := []byte("Lorem ipsum dolor sit amet")
compressed, err := deflate(original)
if err != nil {
panic(err)
}
output, err := inflate(compressed)
if err != nil {
panic(err)
}
if bytes.Compare(output, original) != 0 {
t.Error("Input and output do not match")
}
}
func TestInvalidCompression(t *testing.T) {
_, err := compress("XYZ", []byte{})
if err == nil {
t.Error("should not accept invalid algorithm")
}
_, err = decompress("XYZ", []byte{})
if err == nil {
t.Error("should not accept invalid algorithm")
}
_, err = decompress(DEFLATE, []byte{1, 2, 3, 4})
if err == nil {
t.Error("should not accept invalid data")
}
}
func TestByteBufferTrim(t *testing.T) {
buf := newBufferFromInt(1)
if !bytes.Equal(buf.data, []byte{1}) {
t.Error("Byte buffer for integer '1' should contain [0x01]")
}
buf = newBufferFromInt(65537)
if !bytes.Equal(buf.data, []byte{1, 0, 1}) {
t.Error("Byte buffer for integer '65537' should contain [0x01, 0x00, 0x01]")
}
}
func TestFixedSizeBuffer(t *testing.T) {
data0 := []byte{}
data1 := []byte{1}
data2 := []byte{1, 2}
data3 := []byte{1, 2, 3}
data4 := []byte{1, 2, 3, 4}
buf0 := newFixedSizeBuffer(data0, 4)
buf1 := newFixedSizeBuffer(data1, 4)
buf2 := newFixedSizeBuffer(data2, 4)
buf3 := newFixedSizeBuffer(data3, 4)
buf4 := newFixedSizeBuffer(data4, 4)
if !bytes.Equal(buf0.data, []byte{0, 0, 0, 0}) {
t.Error("Invalid padded buffer for buf0")
}
if !bytes.Equal(buf1.data, []byte{0, 0, 0, 1}) {
t.Error("Invalid padded buffer for buf1")
}
if !bytes.Equal(buf2.data, []byte{0, 0, 1, 2}) {
t.Error("Invalid padded buffer for buf2")
}
if !bytes.Equal(buf3.data, []byte{0, 1, 2, 3}) {
t.Error("Invalid padded buffer for buf3")
}
if !bytes.Equal(buf4.data, []byte{1, 2, 3, 4}) {
t.Error("Invalid padded buffer for buf4")
}
}
func TestSerializeJSONRejectsNil(t *testing.T) {
defer func() {
r := recover()
if r == nil || !strings.Contains(r.(string), "nil pointer") {
t.Error("serialize function should not accept nil pointer")
}
}()
mustSerializeJSON(nil)
}
func TestFixedSizeBufferTooLarge(t *testing.T) {
defer func() {
r := recover()
if r == nil {
t.Error("should not be able to create fixed size buffer with oversized data")
}
}()
newFixedSizeBuffer(make([]byte, 2), 1)
}

View File

@ -0,0 +1,59 @@
# JOSE CLI
The `jose-util` command line utility allows for encryption, decryption, signing
and verification of JWE/JWS messages. Its main purpose is to facilitate dealing
with JWE/JWS messages when testing or debugging.
## Usage
The utility includes the subcommands `encrypt`, `decrypt`, `sign`, `verify` and
`expand`. Examples for each command can be found below.
Algorithms are selected via the `--alg` and `--enc` flags, which influence the
`alg` and `enc` headers in respectively. For JWE, `--alg` specifies the key
managment algorithm (e.g. `RSA-OAEP`) and `--enc` specifies the content
encryption (e.g. `A128GCM`). For JWS, `--alg` specifies the signature algorithm
(e.g. `PS256`).
Input and output files can be specified via the `--in` and `--out` flags.
Either flag can be omitted, in which case `jose-util` uses stdin/stdout for
input/output respectively. By default each command will output a compact
message, but it's possible to get the full serialization by supplying the
`--full` flag.
Keys are specified via the `--key` flag. Supported key types are naked RSA/EC
keys and X.509 certificates with embedded RSA/EC keys. Keys must be in PEM
or DER formats.
## Examples
### Encrypt
Takes a plaintext as input, encrypts, and prints the encrypted message.
jose-util encrypt -k public-key.pem --alg RSA-OAEP --enc A128GCM
### Decrypt
Takes an encrypted message (JWE) as input, decrypts, and prints the plaintext.
jose-util decrypt -k private-key.pem
### Sign
Takes a payload as input, signs it, and prints the signed message with the embedded payload.
jose-util sign -k private-key.pem --alg PS256
### Verify
Reads a signed message (JWS), verifies it, and extracts the payload.
jose-util verify -k public-key.pem
### Expand
Expands a compact message to the full serialization format.
jose-util expand --format JWE # Expands a compact JWE to full format
jose-util expand --format JWS # Expands a compact JWS to full format

View File

@ -0,0 +1,88 @@
Set up test keys.
$ cat > rsa.pub <<EOF
> -----BEGIN PUBLIC KEY-----
> MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAslWybuiNYR7uOgKuvaBw
> qVk8saEutKhOAaW+3hWF65gJei+ZV8QFfYDxs9ZaRZlWAUMtncQPnw7ZQlXO9ogN
> 5cMcN50C6qMOOZzghK7danalhF5lUETC4Hk3Eisbi/PR3IfVyXaRmqL6X66MKj/J
> AKyD9NFIDVy52K8A198Jojnrw2+XXQW72U68fZtvlyl/BTBWQ9Re5JSTpEcVmpCR
> 8FrFc0RPMBm+G5dRs08vvhZNiTT2JACO5V+J5ZrgP3s5hnGFcQFZgDnXLInDUdoi
> 1MuCjaAU0ta8/08pHMijNix5kFofdPEB954MiZ9k4kQ5/utt02I9x2ssHqw71ojj
> vwIDAQAB
> -----END PUBLIC KEY-----
> EOF
$ cat > rsa.key <<EOF
> -----BEGIN RSA PRIVATE KEY-----
> MIIEogIBAAKCAQEAslWybuiNYR7uOgKuvaBwqVk8saEutKhOAaW+3hWF65gJei+Z
> V8QFfYDxs9ZaRZlWAUMtncQPnw7ZQlXO9ogN5cMcN50C6qMOOZzghK7danalhF5l
> UETC4Hk3Eisbi/PR3IfVyXaRmqL6X66MKj/JAKyD9NFIDVy52K8A198Jojnrw2+X
> XQW72U68fZtvlyl/BTBWQ9Re5JSTpEcVmpCR8FrFc0RPMBm+G5dRs08vvhZNiTT2
> JACO5V+J5ZrgP3s5hnGFcQFZgDnXLInDUdoi1MuCjaAU0ta8/08pHMijNix5kFof
> dPEB954MiZ9k4kQ5/utt02I9x2ssHqw71ojjvwIDAQABAoIBABrYDYDmXom1BzUS
> PE1s/ihvt1QhqA8nmn5i/aUeZkc9XofW7GUqq4zlwPxKEtKRL0IHY7Fw1s0hhhCX
> LA0uE7F3OiMg7lR1cOm5NI6kZ83jyCxxrRx1DUSO2nxQotfhPsDMbaDiyS4WxEts
> 0cp2SYJhdYd/jTH9uDfmt+DGwQN7Jixio1Dj3vwB7krDY+mdre4SFY7Gbk9VxkDg
> LgCLMoq52m+wYufP8CTgpKFpMb2/yJrbLhuJxYZrJ3qd/oYo/91k6v7xlBKEOkwD
> 2veGk9Dqi8YPNxaRktTEjnZb6ybhezat93+VVxq4Oem3wMwou1SfXrSUKtgM/p2H
> vfw/76ECgYEA2fNL9tC8u9M0wjA+kvvtDG96qO6O66Hksssy6RWInD+Iqk3MtHQt
> LeoCjvX+zERqwOb6SI6empk5pZ9E3/9vJ0dBqkxx3nqn4M/nRWnExGgngJsL959t
> f50cdxva8y1RjNhT4kCwTrupX/TP8lAG8SfG1Alo2VFR8iWd8hDQcTECgYEA0Xfj
> EgqAsVh4U0s3lFxKjOepEyp0G1Imty5J16SvcOEAD1Mrmz94aSSp0bYhXNVdbf7n
> Rk77htWC7SE29fGjOzZRS76wxj/SJHF+rktHB2Zt23k1jBeZ4uLMPMnGLY/BJ099
> 5DTGo0yU0rrPbyXosx+ukfQLAHFuggX4RNeM5+8CgYB7M1J/hGMLcUpjcs4MXCgV
> XXbiw2c6v1r9zmtK4odEe42PZ0cNwpY/XAZyNZAAe7Q0stxL44K4NWEmxC80x7lX
> ZKozz96WOpNnO16qGC3IMHAT/JD5Or+04WTT14Ue7UEp8qcIQDTpbJ9DxKk/eglS
> jH+SIHeKULOXw7fSu7p4IQKBgBnyVchIUMSnBtCagpn4DKwDjif3nEY+GNmb/D2g
> ArNiy5UaYk5qwEmV5ws5GkzbiSU07AUDh5ieHgetk5dHhUayZcOSLWeBRFCLVnvU
> i0nZYEZNb1qZGdDG8zGcdNXz9qMd76Qy/WAA/nZT+Zn1AiweAovFxQ8a/etRPf2Z
> DbU1AoGAHpCgP7B/4GTBe49H0AQueQHBn4RIkgqMy9xiMeR+U+U0vaY0TlfLhnX+
> 5PkNfkPXohXlfL7pxwZNYa6FZhCAubzvhKCdUASivkoGaIEk6g1VTVYS/eDVQ4CA
> slfl+elXtLq/l1kQ8C14jlHrQzSXx4PQvjDEnAmaHSJNz4mP9Fg=
> -----END RSA PRIVATE KEY-----
> EOF
$ cat > ec.pub <<EOF
> -----BEGIN PUBLIC KEY-----
> MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAE9yoUEAgxTd9svwe9oPqjhcP+f2jcdTL2
> Wq8Aw2v9ht1dBy00tFRPNrCxFCkvMcJFhSPoDUV5NL7zfh3/psiSNYziGPrWEJYf
> gmYihjSeoOf0ru1erpBrTflImPrMftCy
> -----END PUBLIC KEY-----
> EOF
$ cat > ec.key <<EOF
> -----BEGIN EC PRIVATE KEY-----
> MIGkAgEBBDDvoj/bM1HokUjYWO/IDFs26Jo0GIFtU3tMQQu7ZabKscDMK3dZA0mK
> v97ij7BBFbCgBwYFK4EEACKhZANiAAT3KhQQCDFN32y/B72g+qOFw/5/aNx1MvZa
> rwDDa/2G3V0HLTS0VE82sLEUKS8xwkWFI+gNRXk0vvN+Hf+myJI1jOIY+tYQlh+C
> ZiKGNJ6g5/Su7V6ukGtN+UiY+sx+0LI=
> -----END EC PRIVATE KEY-----
> EOF
Encrypt and then decrypt a test message (RSA).
$ echo "Lorem ipsum dolor sit amet" |
> jose-util encrypt --alg RSA-OAEP --enc A128GCM --key rsa.pub |
> jose-util decrypt --key rsa.key
Lorem ipsum dolor sit amet
Encrypt and then decrypt a test message (EC).
$ echo "Lorem ipsum dolor sit amet" |
> jose-util encrypt --alg ECDH-ES+A128KW --enc A128GCM --key ec.pub |
> jose-util decrypt --key ec.key
Lorem ipsum dolor sit amet
Sign and verify a test message (RSA).
$ echo "Lorem ipsum dolor sit amet" |
> jose-util sign --alg PS256 --key rsa.key |
> jose-util verify --key rsa.pub
Lorem ipsum dolor sit amet
Sign and verify a test message (EC).
$ echo "Lorem ipsum dolor sit amet" |
> jose-util sign --alg ES384 --key ec.key |
> jose-util verify --key ec.pub
Lorem ipsum dolor sit amet

View File

@ -0,0 +1,300 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package main
import (
"fmt"
"io/ioutil"
"os"
"github.com/codegangsta/cli"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/square/go-jose"
)
func main() {
app := cli.NewApp()
app.Name = "jose-util"
app.Usage = "command-line utility to deal with JOSE objects"
app.Version = "0.0.2"
app.Author = ""
app.Email = ""
app.Commands = []cli.Command{
{
Name: "encrypt",
Usage: "encrypt a plaintext",
Flags: []cli.Flag{
cli.StringFlag{
Name: "key, k",
Usage: "Path to key file (PEM/DER)",
},
cli.StringFlag{
Name: "input, in",
Usage: "Path to input file (stdin if missing)",
},
cli.StringFlag{
Name: "output, out",
Usage: "Path to output file (stdout if missing)",
},
cli.StringFlag{
Name: "algorithm, alg",
Usage: "Key management algorithm (e.g. RSA-OAEP)",
},
cli.StringFlag{
Name: "encryption, enc",
Usage: "Content encryption algorithm (e.g. A128GCM)",
},
cli.BoolFlag{
Name: "full, f",
Usage: "Use full serialization format (instead of compact)",
},
},
Action: func(c *cli.Context) {
keyBytes, err := ioutil.ReadFile(requiredFlag(c, "key"))
exitOnError(err, "unable to read key file")
pub, err := jose.LoadPublicKey(keyBytes)
exitOnError(err, "unable to read public key")
alg := jose.KeyAlgorithm(requiredFlag(c, "alg"))
enc := jose.ContentEncryption(requiredFlag(c, "enc"))
crypter, err := jose.NewEncrypter(alg, enc, pub)
exitOnError(err, "unable to instantiate encrypter")
obj, err := crypter.Encrypt(readInput(c.String("input")))
exitOnError(err, "unable to encrypt")
var msg string
if c.Bool("full") {
msg = obj.FullSerialize()
} else {
msg, err = obj.CompactSerialize()
exitOnError(err, "unable to serialize message")
}
writeOutput(c.String("output"), []byte(msg))
},
},
{
Name: "decrypt",
Usage: "decrypt a ciphertext",
Flags: []cli.Flag{
cli.StringFlag{
Name: "key, k",
Usage: "Path to key file (PEM/DER)",
},
cli.StringFlag{
Name: "input, in",
Usage: "Path to input file (stdin if missing)",
},
cli.StringFlag{
Name: "output, out",
Usage: "Path to output file (stdout if missing)",
},
},
Action: func(c *cli.Context) {
keyBytes, err := ioutil.ReadFile(requiredFlag(c, "key"))
exitOnError(err, "unable to read private key")
priv, err := jose.LoadPrivateKey(keyBytes)
exitOnError(err, "unable to read private key")
obj, err := jose.ParseEncrypted(string(readInput(c.String("input"))))
exitOnError(err, "unable to parse message")
plaintext, err := obj.Decrypt(priv)
exitOnError(err, "unable to decrypt message")
writeOutput(c.String("output"), plaintext)
},
},
{
Name: "sign",
Usage: "sign a plaintext",
Flags: []cli.Flag{
cli.StringFlag{
Name: "algorithm, alg",
Usage: "Signing algorithm (e.g. PS256)",
},
cli.StringFlag{
Name: "key, k",
Usage: "Path to key file (PEM/DER)",
},
cli.StringFlag{
Name: "input, in",
Usage: "Path to input file (stdin if missing)",
},
cli.StringFlag{
Name: "output, out",
Usage: "Path to output file (stdout if missing)",
},
cli.BoolFlag{
Name: "full, f",
Usage: "Use full serialization format (instead of compact)",
},
},
Action: func(c *cli.Context) {
keyBytes, err := ioutil.ReadFile(requiredFlag(c, "key"))
exitOnError(err, "unable to read key file")
signingKey, err := jose.LoadPrivateKey(keyBytes)
exitOnError(err, "unable to read private key")
alg := jose.SignatureAlgorithm(requiredFlag(c, "algorithm"))
signer, err := jose.NewSigner(alg, signingKey)
exitOnError(err, "unable to make signer")
obj, err := signer.Sign(readInput(c.String("input")))
exitOnError(err, "unable to sign")
var msg string
if c.Bool("full") {
msg = obj.FullSerialize()
} else {
msg, err = obj.CompactSerialize()
exitOnError(err, "unable to serialize message")
}
writeOutput(c.String("output"), []byte(msg))
},
},
{
Name: "verify",
Usage: "verify a signature",
Flags: []cli.Flag{
cli.StringFlag{
Name: "key, k",
Usage: "Path to key file (PEM/DER)",
},
cli.StringFlag{
Name: "input, in",
Usage: "Path to input file (stdin if missing)",
},
cli.StringFlag{
Name: "output, out",
Usage: "Path to output file (stdout if missing)",
},
},
Action: func(c *cli.Context) {
keyBytes, err := ioutil.ReadFile(requiredFlag(c, "key"))
exitOnError(err, "unable to read key file")
verificationKey, err := jose.LoadPublicKey(keyBytes)
exitOnError(err, "unable to read private key")
obj, err := jose.ParseSigned(string(readInput(c.String("input"))))
exitOnError(err, "unable to parse message")
plaintext, err := obj.Verify(verificationKey)
exitOnError(err, "invalid signature")
writeOutput(c.String("output"), plaintext)
},
},
{
Name: "expand",
Usage: "expand compact message to full format",
Flags: []cli.Flag{
cli.StringFlag{
Name: "input, in",
Usage: "Path to input file (stdin if missing)",
},
cli.StringFlag{
Name: "output, out",
Usage: "Path to output file (stdout if missing)",
},
cli.StringFlag{
Name: "format, f",
Usage: "Message format (JWE/JWS, defaults to JWE)",
},
},
Action: func(c *cli.Context) {
input := string(readInput(c.String("input")))
var serialized string
var err error
switch c.String("format") {
case "", "JWE":
var jwe *jose.JsonWebEncryption
jwe, err = jose.ParseEncrypted(input)
if err == nil {
serialized = jwe.FullSerialize()
}
case "JWS":
var jws *jose.JsonWebSignature
jws, err = jose.ParseSigned(input)
if err == nil {
serialized = jws.FullSerialize()
}
}
exitOnError(err, "unable to expand message")
writeOutput(c.String("output"), []byte(serialized))
},
},
}
err := app.Run(os.Args)
exitOnError(err, "unable to run application")
}
// Retrieve value of a required flag
func requiredFlag(c *cli.Context, flag string) string {
value := c.String(flag)
if value == "" {
fmt.Fprintf(os.Stderr, "missing required flag --%s\n", flag)
os.Exit(1)
}
return value
}
// Exit and print error message if we encountered a problem
func exitOnError(err error, msg string) {
if err != nil {
fmt.Fprintf(os.Stderr, "%s: %s\n", msg, err)
os.Exit(1)
}
}
// Read input from file or stdin
func readInput(path string) []byte {
var bytes []byte
var err error
if path != "" {
bytes, err = ioutil.ReadFile(path)
} else {
bytes, err = ioutil.ReadAll(os.Stdin)
}
exitOnError(err, "unable to read input")
return bytes
}
// Write output to file or stdin
func writeOutput(path string, data []byte) {
var err error
if path != "" {
err = ioutil.WriteFile(path, data, 0644)
} else {
_, err = os.Stdout.Write(data)
}
exitOnError(err, "unable to write output")
}

279
Godeps/_workspace/src/github.com/square/go-jose/jwe.go generated vendored Normal file
View File

@ -0,0 +1,279 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"encoding/json"
"fmt"
"strings"
)
// rawJsonWebEncryption represents a raw JWE JSON object. Used for parsing/serializing.
type rawJsonWebEncryption struct {
Protected *byteBuffer `json:"protected,omitempty"`
Unprotected *rawHeader `json:"unprotected,omitempty"`
Header *rawHeader `json:"header,omitempty"`
Recipients []rawRecipientInfo `json:"recipients,omitempty"`
Aad *byteBuffer `json:"aad,omitempty"`
EncryptedKey *byteBuffer `json:"encrypted_key,omitempty"`
Iv *byteBuffer `json:"iv,omitempty"`
Ciphertext *byteBuffer `json:"ciphertext,omitempty"`
Tag *byteBuffer `json:"tag,omitempty"`
}
// rawRecipientInfo represents a raw JWE Per-Recipient header JSON object. Used for parsing/serializing.
type rawRecipientInfo struct {
Header *rawHeader `json:"header,omitempty"`
EncryptedKey string `json:"encrypted_key,omitempty"`
}
// JsonWebEncryption represents an encrypted JWE object after parsing.
type JsonWebEncryption struct {
Header JoseHeader
protected, unprotected *rawHeader
recipients []recipientInfo
aad, iv, ciphertext, tag []byte
original *rawJsonWebEncryption
}
// recipientInfo represents a raw JWE Per-Recipient header JSON object after parsing.
type recipientInfo struct {
header *rawHeader
encryptedKey []byte
}
// GetAuthData retrieves the (optional) authenticated data attached to the object.
func (obj JsonWebEncryption) GetAuthData() []byte {
if obj.aad != nil {
out := make([]byte, len(obj.aad))
copy(out, obj.aad)
return out
}
return nil
}
// Get the merged header values
func (obj JsonWebEncryption) mergedHeaders(recipient *recipientInfo) rawHeader {
out := rawHeader{}
out.merge(obj.protected)
out.merge(obj.unprotected)
if recipient != nil {
out.merge(recipient.header)
}
return out
}
// Get the additional authenticated data from a JWE object.
func (obj JsonWebEncryption) computeAuthData() []byte {
var protected string
if obj.original != nil {
protected = obj.original.Protected.base64()
} else {
protected = base64URLEncode(mustSerializeJSON((obj.protected)))
}
output := []byte(protected)
if obj.aad != nil {
output = append(output, '.')
output = append(output, []byte(base64URLEncode(obj.aad))...)
}
return output
}
// ParseEncrypted parses an encrypted message in compact or full serialization format.
func ParseEncrypted(input string) (*JsonWebEncryption, error) {
input = stripWhitespace(input)
if strings.HasPrefix(input, "{") {
return parseEncryptedFull(input)
}
return parseEncryptedCompact(input)
}
// parseEncryptedFull parses a message in compact format.
func parseEncryptedFull(input string) (*JsonWebEncryption, error) {
var parsed rawJsonWebEncryption
err := json.Unmarshal([]byte(input), &parsed)
if err != nil {
return nil, err
}
return parsed.sanitized()
}
// sanitized produces a cleaned-up JWE object from the raw JSON.
func (parsed *rawJsonWebEncryption) sanitized() (*JsonWebEncryption, error) {
obj := &JsonWebEncryption{
original: parsed,
unprotected: parsed.Unprotected,
}
// Check that there is not a nonce in the unprotected headers
if (parsed.Unprotected != nil && parsed.Unprotected.Nonce != "") ||
(parsed.Header != nil && parsed.Header.Nonce != "") {
return nil, ErrUnprotectedNonce
}
if parsed.Protected != nil && len(parsed.Protected.bytes()) > 0 {
err := json.Unmarshal(parsed.Protected.bytes(), &obj.protected)
if err != nil {
return nil, fmt.Errorf("square/go-jose: invalid protected header: %s, %s", err, parsed.Protected.base64())
}
}
// Note: this must be called _after_ we parse the protected header,
// otherwise fields from the protected header will not get picked up.
obj.Header = obj.mergedHeaders(nil).sanitized()
if len(parsed.Recipients) == 0 {
obj.recipients = []recipientInfo{
recipientInfo{
header: parsed.Header,
encryptedKey: parsed.EncryptedKey.bytes(),
},
}
} else {
obj.recipients = make([]recipientInfo, len(parsed.Recipients))
for r := range parsed.Recipients {
encryptedKey, err := base64URLDecode(parsed.Recipients[r].EncryptedKey)
if err != nil {
return nil, err
}
// Check that there is not a nonce in the unprotected header
if parsed.Recipients[r].Header != nil && parsed.Recipients[r].Header.Nonce != "" {
return nil, ErrUnprotectedNonce
}
obj.recipients[r].header = parsed.Recipients[r].Header
obj.recipients[r].encryptedKey = encryptedKey
}
}
for _, recipient := range obj.recipients {
headers := obj.mergedHeaders(&recipient)
if headers.Alg == "" || headers.Enc == "" {
return nil, fmt.Errorf("square/go-jose: message is missing alg/enc headers")
}
}
obj.iv = parsed.Iv.bytes()
obj.ciphertext = parsed.Ciphertext.bytes()
obj.tag = parsed.Tag.bytes()
obj.aad = parsed.Aad.bytes()
return obj, nil
}
// parseEncryptedCompact parses a message in compact format.
func parseEncryptedCompact(input string) (*JsonWebEncryption, error) {
parts := strings.Split(input, ".")
if len(parts) != 5 {
return nil, fmt.Errorf("square/go-jose: compact JWE format must have five parts")
}
rawProtected, err := base64URLDecode(parts[0])
if err != nil {
return nil, err
}
encryptedKey, err := base64URLDecode(parts[1])
if err != nil {
return nil, err
}
iv, err := base64URLDecode(parts[2])
if err != nil {
return nil, err
}
ciphertext, err := base64URLDecode(parts[3])
if err != nil {
return nil, err
}
tag, err := base64URLDecode(parts[4])
if err != nil {
return nil, err
}
raw := &rawJsonWebEncryption{
Protected: newBuffer(rawProtected),
EncryptedKey: newBuffer(encryptedKey),
Iv: newBuffer(iv),
Ciphertext: newBuffer(ciphertext),
Tag: newBuffer(tag),
}
return raw.sanitized()
}
// CompactSerialize serializes an object using the compact serialization format.
func (obj JsonWebEncryption) CompactSerialize() (string, error) {
if len(obj.recipients) != 1 || obj.unprotected != nil ||
obj.protected == nil || obj.recipients[0].header != nil {
return "", ErrNotSupported
}
serializedProtected := mustSerializeJSON(obj.protected)
return fmt.Sprintf(
"%s.%s.%s.%s.%s",
base64URLEncode(serializedProtected),
base64URLEncode(obj.recipients[0].encryptedKey),
base64URLEncode(obj.iv),
base64URLEncode(obj.ciphertext),
base64URLEncode(obj.tag)), nil
}
// FullSerialize serializes an object using the full JSON serialization format.
func (obj JsonWebEncryption) FullSerialize() string {
raw := rawJsonWebEncryption{
Unprotected: obj.unprotected,
Iv: newBuffer(obj.iv),
Ciphertext: newBuffer(obj.ciphertext),
EncryptedKey: newBuffer(obj.recipients[0].encryptedKey),
Tag: newBuffer(obj.tag),
Aad: newBuffer(obj.aad),
Recipients: []rawRecipientInfo{},
}
if len(obj.recipients) > 1 {
for _, recipient := range obj.recipients {
info := rawRecipientInfo{
Header: recipient.header,
EncryptedKey: base64URLEncode(recipient.encryptedKey),
}
raw.Recipients = append(raw.Recipients, info)
}
} else {
// Use flattened serialization
raw.Header = obj.recipients[0].header
raw.EncryptedKey = newBuffer(obj.recipients[0].encryptedKey)
}
if obj.protected != nil {
raw.Protected = newBuffer(mustSerializeJSON(obj.protected))
}
return string(mustSerializeJSON(raw))
}

View File

@ -0,0 +1,537 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"math/big"
"testing"
)
func TestCompactParseJWE(t *testing.T) {
// Should parse
msg := "eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhHQ00ifQ.dGVzdA.dGVzdA.dGVzdA.dGVzdA"
_, err := ParseEncrypted(msg)
if err != nil {
t.Error("Unable to parse valid message:", err)
}
// Messages that should fail to parse
failures := []string{
// Too many parts
"eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhHQ00ifQ.dGVzdA.dGVzdA.dGVzdA.dGVzdA.dGVzdA",
// Not enough parts
"eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhHQ00ifQ.dGVzdA.dGVzdA.dGVzdA",
// Invalid encrypted key
"eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhHQ00ifQ.//////.dGVzdA.dGVzdA.dGVzdA",
// Invalid IV
"eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhHQ00ifQ.dGVzdA.//////.dGVzdA.dGVzdA",
// Invalid ciphertext
"eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhHQ00ifQ.dGVzdA.dGVzdA.//////.dGVzdA",
// Invalid tag
"eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhHQ00ifQ.dGVzdA.dGVzdA.dGVzdA.//////",
// Invalid header
"W10.dGVzdA.dGVzdA.dGVzdA.dGVzdA",
// Invalid header
"######.dGVzdA.dGVzdA.dGVzdA.dGVzdA",
// Missing alc/enc params
"e30.dGVzdA.dGVzdA.dGVzdA.dGVzdA",
}
for _, msg := range failures {
_, err = ParseEncrypted(msg)
if err == nil {
t.Error("Able to parse invalid message", msg)
}
}
}
func TestFullParseJWE(t *testing.T) {
// Messages that should succeed to parse
successes := []string{
// Flattened serialization, single recipient
"{\"protected\":\"eyJhbGciOiJYWVoiLCJlbmMiOiJYWVoifQo\",\"encrypted_key\":\"QUJD\",\"iv\":\"QUJD\",\"ciphertext\":\"QUJD\",\"tag\":\"QUJD\"}",
// Unflattened serialization, single recipient
"{\"protected\":\"\",\"unprotected\":{\"enc\":\"XYZ\"},\"recipients\":[{\"header\":{\"alg\":\"XYZ\"},\"encrypted_key\":\"QUJD\"}],\"iv\":\"QUJD\",\"ciphertext\":\"QUJD\",\"tag\":\"QUJD\"}",
}
for i := range successes {
_, err := ParseEncrypted(successes[i])
if err != nil {
t.Error("Unble to parse valid message", err, successes[i])
}
}
// Messages that should fail to parse
failures := []string{
// Empty
"{}",
// Invalid JSON
"{XX",
// Invalid protected header
"{\"protected\":\"###\"}",
// Invalid protected header
"{\"protected\":\"e1gK\"}",
// Invalid encrypted key
"{\"protected\":\"e30\",\"encrypted_key\":\"###\"}",
// Invalid IV
"{\"protected\":\"e30\",\"encrypted_key\":\"QUJD\",\"iv\":\"###\"}",
// Invalid ciphertext
"{\"protected\":\"e30\",\"encrypted_key\":\"QUJD\",\"iv\":\"QUJD\",\"ciphertext\":\"###\"}",
// Invalid tag
"{\"protected\":\"e30\",\"encrypted_key\":\"QUJD\",\"iv\":\"QUJD\",\"ciphertext\":\"QUJD\",\"tag\":\"###\"}",
// Invalid AAD
"{\"protected\":\"e30\",\"encrypted_key\":\"QUJD\",\"iv\":\"QUJD\",\"ciphertext\":\"QUJD\",\"tag\":\"QUJD\",\"aad\":\"###\"}",
// Missing alg/enc headers
"{\"protected\":\"e30\",\"encrypted_key\":\"QUJD\",\"iv\":\"QUJD\",\"ciphertext\":\"QUJD\",\"tag\":\"QUJD\"}",
// Missing enc header
"{\"protected\":\"eyJhbGciOiJYWVoifQ\",\"encrypted_key\":\"QUJD\",\"iv\":\"QUJD\",\"ciphertext\":\"QUJD\",\"tag\":\"QUJD\"}",
// Missing alg header
"{\"protected\":\"eyJlbmMiOiJYWVoifQ\",\"encrypted_key\":\"QUJD\",\"iv\":\"QUJD\",\"ciphertext\":\"QUJD\",\"tag\":\"QUJD\"}",
// Unflattened serialization, single recipient, invalid encrypted_key
"{\"protected\":\"\",\"recipients\":[{\"header\":{\"alg\":\"XYZ\", \"enc\":\"XYZ\"},\"encrypted_key\":\"###\"}],\"iv\":\"QUJD\",\"ciphertext\":\"QUJD\",\"tag\":\"QUJD\"}",
// Unflattened serialization, single recipient, missing alg
"{\"protected\":\"eyJhbGciOiJYWVoifQ\",\"recipients\":[{\"encrypted_key\":\"QUJD\"}],\"iv\":\"QUJD\",\"ciphertext\":\"QUJD\",\"tag\":\"QUJD\"}",
}
for i := range failures {
_, err := ParseEncrypted(failures[i])
if err == nil {
t.Error("Able to parse invalid message", err, failures[i])
}
}
}
func TestMissingInvalidHeaders(t *testing.T) {
obj := &JsonWebEncryption{
protected: &rawHeader{Enc: A128GCM},
unprotected: &rawHeader{},
recipients: []recipientInfo{
recipientInfo{},
},
}
_, err := obj.Decrypt(nil)
if err != ErrUnsupportedKeyType {
t.Error("should detect invalid key")
}
obj.unprotected.Crit = []string{"1", "2"}
_, err = obj.Decrypt(nil)
if err == nil {
t.Error("should reject message with crit header")
}
obj.unprotected.Crit = nil
obj.protected = &rawHeader{Alg: string(RSA1_5)}
_, err = obj.Decrypt(rsaTestKey)
if err == nil || err == ErrCryptoFailure {
t.Error("should detect missing enc header")
}
}
func TestRejectUnprotectedJWENonce(t *testing.T) {
// No need to test compact, since that's always protected
// Flattened JSON
input := `{
"header": {
"alg": "XYZ", "enc": "XYZ",
"nonce": "should-cause-an-error"
},
"encrypted_key": "does-not-matter",
"aad": "does-not-matter",
"iv": "does-not-matter",
"ciphertext": "does-not-matter",
"tag": "does-not-matter"
}`
_, err := ParseEncrypted(input)
if err == nil {
t.Error("JWE with an unprotected nonce parsed as valid.")
} else if err.Error() != "square/go-jose: Nonce parameter included in unprotected header" {
t.Errorf("Improper error for unprotected nonce: %v", err)
}
input = `{
"unprotected": {
"alg": "XYZ", "enc": "XYZ",
"nonce": "should-cause-an-error"
},
"encrypted_key": "does-not-matter",
"aad": "does-not-matter",
"iv": "does-not-matter",
"ciphertext": "does-not-matter",
"tag": "does-not-matter"
}`
_, err = ParseEncrypted(input)
if err == nil {
t.Error("JWE with an unprotected nonce parsed as valid.")
} else if err.Error() != "square/go-jose: Nonce parameter included in unprotected header" {
t.Errorf("Improper error for unprotected nonce: %v", err)
}
// Full JSON
input = `{
"header": { "alg": "XYZ", "enc": "XYZ" },
"aad": "does-not-matter",
"iv": "does-not-matter",
"ciphertext": "does-not-matter",
"tag": "does-not-matter",
"recipients": [{
"header": { "nonce": "should-cause-an-error" },
"encrypted_key": "does-not-matter"
}]
}`
_, err = ParseEncrypted(input)
if err == nil {
t.Error("JWS with an unprotected nonce parsed as valid.")
} else if err.Error() != "square/go-jose: Nonce parameter included in unprotected header" {
t.Errorf("Improper error for unprotected nonce: %v", err)
}
}
func TestCompactSerialize(t *testing.T) {
// Compact serialization must fail if we have unprotected headers
obj := &JsonWebEncryption{
unprotected: &rawHeader{Alg: "XYZ"},
}
_, err := obj.CompactSerialize()
if err == nil {
t.Error("Object with unprotected headers can't be compact serialized")
}
}
func TestVectorsJWE(t *testing.T) {
plaintext := []byte("The true sign of intelligence is not knowledge but imagination.")
publicKey := &rsa.PublicKey{
N: fromBase64Int(`
oahUIoWw0K0usKNuOR6H4wkf4oBUXHTxRvgb48E-BVvxkeDNjbC4he8rUW
cJoZmds2h7M70imEVhRU5djINXtqllXI4DFqcI1DgjT9LewND8MW2Krf3S
psk_ZkoFnilakGygTwpZ3uesH-PFABNIUYpOiN15dsQRkgr0vEhxN92i2a
sbOenSZeyaxziK72UwxrrKoExv6kc5twXTq4h-QChLOln0_mtUZwfsRaMS
tPs6mS6XrgxnxbWhojf663tuEQueGC-FCMfra36C9knDFGzKsNa7LZK2dj
YgyD3JR_MB_4NUJW_TqOQtwHYbxevoJArm-L5StowjzGy-_bq6Gw`),
E: 65537,
}
expectedCompact := stripWhitespace(`
eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ.ROQCfge4JPm_
yACxv1C1NSXmwNbL6kvmCuyxBRGpW57DvlwByjyjsb6g8m7wtLMqKEyhFCn
tV7sjippEePIlKln6BvVnz5ZLXHNYQgmubuNq8MC0KTwcaGJ_C0z_T8j4PZ
a1nfpbhSe-ePYaALrf_nIsSRKu7cWsrwOSlaRPecRnYeDd_ytAxEQWYEKFi
Pszc70fP9geZOB_09y9jq0vaOF0jGmpIAmgk71lCcUpSdrhNokTKo5y8MH8
3NcbIvmuZ51cjXQj1f0_AwM9RW3oCh2Hu0z0C5l4BujZVsDuGgMsGZsjUhS
RZsAQSXHCAmlJ2NlnN60U7y4SPJhKv5tKYw.48V1_ALb6US04U3b.5eym8T
W_c8SuK0ltJ3rpYIzOeDQz7TALvtu6UG9oMo4vpzs9tX_EFShS8iB7j6jiS
diwkIr3ajwQzaBtQD_A.XFBoMYUZodetZdvTiFvSkQ`)
expectedFull := stripWhitespace(`
{ "protected":"eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ",
"encrypted_key":
"ROQCfge4JPm_yACxv1C1NSXmwNbL6kvmCuyxBRGpW57DvlwByjyjsb
6g8m7wtLMqKEyhFCntV7sjippEePIlKln6BvVnz5ZLXHNYQgmubuNq
8MC0KTwcaGJ_C0z_T8j4PZa1nfpbhSe-ePYaALrf_nIsSRKu7cWsrw
OSlaRPecRnYeDd_ytAxEQWYEKFiPszc70fP9geZOB_09y9jq0vaOF0
jGmpIAmgk71lCcUpSdrhNokTKo5y8MH83NcbIvmuZ51cjXQj1f0_Aw
M9RW3oCh2Hu0z0C5l4BujZVsDuGgMsGZsjUhSRZsAQSXHCAmlJ2Nln
N60U7y4SPJhKv5tKYw",
"iv": "48V1_ALb6US04U3b",
"ciphertext":
"5eym8TW_c8SuK0ltJ3rpYIzOeDQz7TALvtu6UG9oMo4vpzs9tX_EFS
hS8iB7j6jiSdiwkIr3ajwQzaBtQD_A",
"tag":"XFBoMYUZodetZdvTiFvSkQ" }`)
// Mock random reader
randReader = bytes.NewReader([]byte{
// Encryption key
177, 161, 244, 128, 84, 143, 225, 115, 63, 180, 3, 255, 107, 154,
212, 246, 138, 7, 110, 91, 112, 46, 34, 105, 47, 130, 203, 46, 122,
234, 64, 252,
// Randomness for RSA-OAEP
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// Initialization vector
227, 197, 117, 252, 2, 219, 233, 68, 180, 225, 77, 219})
defer resetRandReader()
// Encrypt with a dummy key
encrypter, err := NewEncrypter(RSA_OAEP, A256GCM, publicKey)
if err != nil {
panic(err)
}
object, err := encrypter.Encrypt(plaintext)
if err != nil {
panic(err)
}
serialized, err := object.CompactSerialize()
if serialized != expectedCompact {
t.Error("Compact serialization is not what we expected", serialized, expectedCompact)
}
serialized = object.FullSerialize()
if serialized != expectedFull {
t.Error("Full serialization is not what we expected")
}
}
func TestVectorsJWECorrupt(t *testing.T) {
priv := &rsa.PrivateKey{
PublicKey: rsa.PublicKey{
N: fromHexInt(`
a8b3b284af8eb50b387034a860f146c4919f318763cd6c5598c8
ae4811a1e0abc4c7e0b082d693a5e7fced675cf4668512772c0c
bc64a742c6c630f533c8cc72f62ae833c40bf25842e984bb78bd
bf97c0107d55bdb662f5c4e0fab9845cb5148ef7392dd3aaff93
ae1e6b667bb3d4247616d4f5ba10d4cfd226de88d39f16fb`),
E: 65537,
},
D: fromHexInt(`
53339cfdb79fc8466a655c7316aca85c55fd8f6dd898fdaf1195
17ef4f52e8fd8e258df93fee180fa0e4ab29693cd83b152a553d
4ac4d1812b8b9fa5af0e7f55fe7304df41570926f3311f15c4d6
5a732c483116ee3d3d2d0af3549ad9bf7cbfb78ad884f84d5beb
04724dc7369b31def37d0cf539e9cfcdd3de653729ead5d1`),
Primes: []*big.Int{
fromHexInt(`
d32737e7267ffe1341b2d5c0d150a81b586fb3132bed2f8d5262
864a9cb9f30af38be448598d413a172efb802c21acf1c11c520c
2f26a471dcad212eac7ca39d`),
fromHexInt(`
cc8853d1d54da630fac004f471f281c7b8982d8224a490edbeb3
3d3e3d5cc93c4765703d1dd791642f1f116a0dd852be2419b2af
72bfe9a030e860b0288b5d77`),
},
}
corruptCiphertext := stripWhitespace(`
eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhHQ00ifQ.NFl09dehy
IR2Oh5iSsvEa82Ps7DLjRHeo0RnuTuSR45OsaIP6U8yu7vLlWaZKSZMy
B2qRBSujf-5XIRoNhtyIyjk81eJRXGa_Bxaor1XBCMyyhGchW2H2P71f
PhDO6ufSC7kV4bNqgHR-4ziS7KXwzN83_5kogXqxUpymUoJDNc.tk-GT
W_VVhiTIKFF.D_BE6ImZUl9F.52a-zFnRb3YQwIC7UrhVyQ`)
corruptAuthtag := stripWhitespace(`
eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkExMjhHQ00ifQ.NFl09dehy
IR2Oh5iSsvEa82Ps7DLjRHeo0RnuTuSR45OsaIP6U8yu7vLlWaZKSZMy
B2qRBSujf-5XIRoNhtyIyjk81eJRXGa_Bxaor1XBCMyyhGchW2H2P71f
PhDO6ufSC7kV4bNqgHR-4ziS7KNwzN83_5kogXqxUpymUoJDNc.tk-GT
W_VVhiTIKFF.D_BE6ImZUl9F.52a-zFnRb3YQwiC7UrhVyQ`)
msg, _ := ParseEncrypted(corruptCiphertext)
_, err := msg.Decrypt(priv)
if err != ErrCryptoFailure {
t.Error("should detect corrupt ciphertext")
}
msg, _ = ParseEncrypted(corruptAuthtag)
_, err = msg.Decrypt(priv)
if err != ErrCryptoFailure {
t.Error("should detect corrupt auth tag")
}
}
// Test vectors generated with nimbus-jose-jwt
func TestSampleNimbusJWEMessagesRSA(t *testing.T) {
rsaPrivateKey, err := LoadPrivateKey(fromBase64Bytes(`
MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCNRCEmf5PlbXKuT4uwnb
wGKvFrtpi+bDYxOZxxqxdVkZM/bYATAnD1fg9pNvLMKeF+MWJ9kPIMmDgOh9RdnRdLvQGb
BzhLmxwhhcua2QYiHEZizXmiaXvNP12bzEBhebdX7ObW8izMVW0p0lqHPNzkK3K75B0Sxo
FMVKkZ7KtBHgepBT5yPhPPcNe5lXQeTne5bo3I60DRcN9jTBgMJOXdq0I9o4y6ZmoXdNTm
0EyLzn9/EYiHqBxtKFh791EHR7wYgyi/t+nOKr4sO74NbEByP0mHDil+mPvZSzFW4l7fPx
OclRZvpRIKIub2TroZA9s2WsshGf79eqqXYbBB9NNRAgMBAAECggEAIExbZ/nzTplfhwsY
3SCzRJW87OuqsJ79JPQPGM4NX7sQ94eJqM7+FKLl0yCFErjgnYGdCyiArvB+oJPdsimgke
h83X0hGeg03lVA3/6OsG3WifCAxulnLN44AM8KST8S9D9t5+cm5vEBLHazzAfWWTS13s+g
9hH8rf8NSqgZ36EutjKlvLdHx1mWcKX7SREFVHT8FWPAbdhTLEHUjoWHrfSektnczaSHnt
q8fFJy6Ld13QkF1ZJRUhtA24XrD+qLTc+M36IuedjeZaLHFB+KyhYR3YvXEtrbCug7dCRd
uG6uTlDCSaSy7xHeTPolWtWo9F202jal54otxiAJFGUHgQKBgQDRAT0s6YQZUfwE0wluXV
k0JdhDdCo8sC1aMmKlRKWUkBAqrDl7BI3MF56VOr4ybr90buuscshFf9TtrtBOjHSGcfDI
tSKfhhkW5ewQKB0YqyHzoD6UKT0/XAshFY3esc3uCxuJ/6vOiXV0og9o7eFvr51O0TfDFh
mcTvW4wirKlQKBgQCtB7UAu8I9Nn8czkd6oXLDRyTWYviuiqFmxR+PM9klgZtsumkeSxO1
lkfFoj9+G8nFaqYEBA9sPeNtJVTSROCvj/iQtoqpV2NiI/wWeVszpBwsswx2mlks4LJa8a
Yz9xrsfNoroKYVppefc/MCoSx4M+99RSm3FSpLGZQHAUGyzQKBgQDMQmq4JuuMF1y2lk0E
SESyuz21BqV0tDVOjilsHT+5hmXWXoS6nkO6L2czrrpM7YE82F6JJZBmo7zEIXHBInGLJ3
XLoYLZ5qNEhqYDUEDHaBCBWZ1vDTKnZlwWFEuXVavNNZvPbUhKTHq25t8qjDki/r09Vykp
BsM2yNBKpbBOVQKBgCJyUVd3CaFUExQyAMrqD0XPCQdhJq7gzGcAQVsp8EXmOoH3zmuIeM
ECzQEMXuWFNLMHm0tbX5Kl83vMHcnKioyI9ewhWxOBYTitf0ceG8j5F97SOl32NmCXzwoJ
55Oa0xJXfLuIvOe8hZzp4WwZmBfKBxiCR166aPQQgIawelrVAoGAEJsHomfCI4epxH4oMw
qYJMCGy95zloB+2+c86BZCOJAGwnfzbtc2eutWZw61/9sSO8sQCfzA8oX+5HwAgnFVzwW4
lNMZohppYcpwN9EyjkPaCXuALC7p5rF2o63wY7JLvnjS2aYZliknh2yW6X6fSB0PK0Cpvd
lAIyRw6Kud0zI=`))
if err != nil {
panic(err)
}
rsaSampleMessages := []string{
"eyJlbmMiOiJBMTI4R0NNIiwiYWxnIjoiUlNBMV81In0.EW0KOhHeoAxTBnLjYhh2T6HjwI-srNs6RpcSdZvE-GJ5iww3EYWBCmeGGj1UVz6OcBfwW3wllZ6GPOHU-hxVQH5KYpVOjkmrFIYU6-8BHhxBP_PjSJEBCZzjOgsCm9Th4-zmlO7UWTdK_UtwE7nk4X-kkmEy-aZBCShA8nFe2MVvqD5F7nvEWNFBOHh8ae_juo-kvycoIzvxLV9g1B0Zn8K9FAlu8YF1KiL5NFekn76f3jvAwlExuRbFPUx4gJN6CeBDK_D57ABsY2aBVDSiQceuYZxvCIAajqSS6dMT382FNJzAiQhToOpo_1w5FnnBjzJLLEKDk_I-Eo2YCWxxsQ.5mCMuxJqLRuPXGAr.Ghe4INeBhP3MDWGvyNko7qanKdZIzKjfeiU.ja3UlVWJXKNFJ-rZsJWycw",
"eyJlbmMiOiJBMTkyR0NNIiwiYWxnIjoiUlNBMV81In0.JsJeYoP0St1bRYNUaAmA34DAA27usE7RNuC2grGikBRmh1xrwUOpnEIXXpwr7fjVmNi52zzWkNHC8JkkRTrLcCh2VXvnOnarpH8DCr9qM6440bSrahzbxIvDds8z8q0wT1W4kjVnq1mGwGxg8RQNBWTV6Sp2FLQkZyjzt_aXsgYzr3zEmLZxB-d41lBS81Mguk_hdFJIg_WO4ao54lozvxkCn_uMiIZ8eLb8qHy0h-N21tiHGCaiC2vV8KXomwoqbJ0SXrEH4r9_R2J844H80TBZdbvNBd8whvoQNHvOX659LNs9EQ9xxvHU2kqGZekXBu7sDXXTjctMkMITobGSzw.1v5govaDvanP3LGp.llwYNBDrD7MwVLaFHesljlratfmndWs4XPQ.ZGT1zk9_yIKi2GzW6CuAyA",
"eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiUlNBMV81In0.fBv3fA3TMS3ML8vlsCuvwdsKvB0ym8R30jJrlOiqkWKk7WVUkjDInFzr1zw3Owla6c5BqOJNoACXt4IWbkLbkoWV3tweXlWwpafuaWPkjLOUH_K31rS2fCX5x-MTj8_hScquVQXpbz3vk2EfulRmGXZc_8JU2NqQCAsYy3a28houqP3rDe5jEAvZS2SOFvJkKW--f5S-z39t1D7fNz1N8Btd9SmXWQzjbul5YNxI9ctqxhJpkKYpxOLlvrzdA6YdJjOlDx3n6S-HnSZGM6kQd_xKtAf8l1EGwhQmhbXhMhjVxMvGwE5BX7PAb8Ccde5bzOCJx-PVbVetuLb169ZYqQ._jiZbOPRR82FEWMZ.88j68LI-K2KT6FMBEdlz6amG5nvaJU8a-90.EnEbUTJsWNqJYKzfO0x4Yw",
"eyJlbmMiOiJBMTI4Q0JDLUhTMjU2IiwiYWxnIjoiUlNBMV81In0.bN6FN0qmGxhkESiVukrCaDVG3woL0xE-0bHN_Mu0WZXTQWbzzT-7jOvaN1xhGK8nzi8qpCSRgE5onONNB9i8OnJm3MMIxF7bUUEAXO9SUAFn2v--wNc4drPc5OjIu0RiJrDVDkkGjNrBDIuBaEQcke7A0v91PH58dXE7o4TLPzC8UJmRtXWhUSwjXVF3-UmYRMht2rjHJlvRbtm6Tu2LMBIopRL0zj6tlPP4Dm7I7sz9OEB3VahYAhpXnFR7D_f8RjLSXQmBvB1FiI5l_vMz2NFt2hYUmQF3EJMLIEdHvvPp3iHDGiXC1obJrDID_CCf3qs9UY7DMYL622KLvP2NIg.qb72oxECzxd_aNuHVR0aNg.Gwet9Ms8hB8rKEb0h4RGdFNRq97Qs2LQaJM0HWrCqoI.03ljVThOFvgXzMmQJ79VjQ",
"eyJlbmMiOiJBMTkyQ0JDLUhTMzg0IiwiYWxnIjoiUlNBMV81In0.ZbEOP6rqdiIP4g7Nl1PL5gwhgDwv9RinyiUQxZXPOmD7kwEZrZ093dJnhqI9kEd3QGFlHDpB7HgNz53d27z2zmEj1-27v6miizq6tH4sN2MoeZLwSyk16O1_n3bVdDmROawsTYYFJfHsuLwyVJxPd37duIYnbUCFO9J8lLIv-2VI50KJ1t47YfE4P-Wt9jVzxP2CVUQaJwTlcwfiDLJTagYmfyrDjf525WlQFlgfJGqsJKp8BX9gmKvAo-1iCBAM8VpEjS0u0_hW9VSye36yh8BthVV-VJkhJ-0tMpto3bbBmj7M25Xf4gbTrrVU7Nz6wb18YZuhHZWmj2Y2nHV6Jg.AjnS44blTrIIfFlqVw0_Mg.muCRgaEXNKKpW8rMfW7jf7Zpn3VwSYDz-JTRg16jZxY.qjc9OGlMaaWKDWQSIwVpR4K556Pp6SF9",
"eyJlbmMiOiJBMjU2Q0JDLUhTNTEyIiwiYWxnIjoiUlNBMV81In0.c7_F1lMlRHQQE3WbKmtHBYTosdZrG9hPfs-F9gNQYet61zKG8NXVkSy0Zf2UFHt0vhcO8hP2qrqOFsy7vmRj20xnGHQ2EE29HH6hwX5bx1Jj3uE5WT9Gvh0OewpvF9VubbwWTIObBpdEG7XdJsMAQlIxtXUmQYAtLTWcy2ZJipyJtVlWQLaPuE8BKfZH-XAsp2CpQNiRPI8Ftza3EAspiyRfVQbjKt7nF8nuZ2sESjt7Y50q4CSiiCuGT28T3diMN0_rWrH-I-xx7OQvJlrQaNGglGtu3jKUcrJDcvxW2e1OxriaTeuQ848ayuRvGUNeSv6WoVYmkiK1x_gNwUAAbw.7XtSqHJA7kjt6JrfxJMwiA.Yvi4qukAbdT-k-Fd2s4G8xzL4VFxaFC0ZIzgFDAI6n0.JSWPJ-HjOE3SK9Lm0yHclmjS7Z1ahtQga9FHGCWVRcc",
"eyJlbmMiOiJBMTI4R0NNIiwiYWxnIjoiUlNBLU9BRVAifQ.SYVxJbCnJ_tcR13LJpaqHQj-nGNkMxre4A1FmnUdxnvzeJwuvyrLiUdRsZR1IkP4fqLtDON2mumx39QeJQf0WIObPBYlIxycRLkwxDHRVlyTmPvdZHAxN26jPrk09wa5SgK1UF1W1VSQIPm-Tek8jNAmarF1Yxzxl-t54wZFlQiHP4TuaczugO5f-J4nlWenfla2mU1snDgdUMlEZGOAQ_gTEtwSgd1MqXmK_7LZBkoDqqoCujMZhziafJPXPDaUUqBLW3hHkkDA7GpVec3XcTtNUWQJqOpMyQhqo1KQMc8jg3fuirILp-hjvvNVtBnCRBvbrKUCPzu2_yH3HM_agA.2VsdijtonAxShNIW.QzzB3P9CxYP3foNKN0Ma1Z9tMwijAlkWo08.ZdQkIPDY_M-hxqi5fD4NGw",
"eyJlbmMiOiJBMTkyR0NNIiwiYWxnIjoiUlNBLU9BRVAifQ.Z2oTJXXib1u-S38Vn3DRKE3JnhnwgUa92UhsefzY2Wpdn0dmxMfYt9iRoJGFfSAcA97MOfjyvXVRCKWXGrG5AZCMAXEqU8SNQwKPRjlcqojcVzQyMucXI0ikLC4mUgeRlfKTwsBicq6JZZylzRoLGGSNJQbni3_BLsf7H3Qor0BYg0FPCLG9Z2OVvrFzvjTLmZtV6gFlVrMHBxJub_aUet9gAkxiu1Wx_Kx46TlLX2tkumXIpTGlzX6pef6jLeZ5EIg_K-Uz4tkWgWQIEkLD7qmTyk5pAGmzukHa_08jIh5-U-Sd8XGZdx4J1pVPJ5CPg0qDJGZ_cfgkgpWbP_wB6A.4qgKfokK1EwYxz20._Md82bv_KH2Vru0Ue2Eb6oAqHP2xBBP5jF8.WFRojvQpD5VmZlOr_dN0rQ",
"eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiUlNBLU9BRVAifQ.JzCUgJcBJmBgByp4PBAABUfhezPvndxBIVzaoZ96DAS0HPni0OjMbsOGsz6JwNsiTr1gSn_S6R1WpZM8GJc9R2z0EKKVP67TR62ZSG0MEWyLpHmG_4ug0fAp1HWWMa9bT4ApSaOLgwlpVAb_-BPZZgIu6c8cREuMon6UBHDqW1euTBbzk8zix3-FTZ6p5b_3soDL1wXfRiRBEsxxUGMnpryx1OFb8Od0JdyGF0GgfLt6OoaujDJpo-XtLRawu1Xlg6GqRs0NQwSHZ5jXgQ6-zgCufXonAmYTiIyBXY2no9XmECTexjwrS_05nA7H-UyIZEBOCp3Yhz2zxrt5j_0pvQ.SJR-ghhaUKP4zXtZ.muiuzLfZA0y0BDNsroGTw2r2-l73SLf9lK8.XFMH1oHr1G6ByP3dWSUUPA",
"eyJlbmMiOiJBMTI4Q0JDLUhTMjU2IiwiYWxnIjoiUlNBLU9BRVAifQ.U946MVfIm4Dpk_86HrnIA-QXyiUu0LZ67PL93CMLmEtJemMNDqmRd9fXyenCIhAC7jPIV1aaqW7gS194xyrrnUpBoJBdbegiPqOfquy493Iq_GQ8OXnFxFibPNQ6rU0l8BwIfh28ei_VIF2jqN6bhxFURCVW7fG6n6zkCCuEyc7IcxWafSHjH2FNttREuVj-jS-4LYDZsFzSKbpqoYF6mHt8H3btNEZDTSmy_6v0fV1foNtUKNfWopCp-iE4hNh4EzJfDuU8eXLhDb03aoOockrUiUCh-E0tQx9su4rOv-mDEOHHAQK7swm5etxoa7__9PC3Hg97_p4GM9gC9ykNgw.pnXwvoSPi0kMQP54of-HGg.RPJt1CMWs1nyotx1fOIfZ8760mYQ69HlyDp3XmdVsZ8.Yxw2iPVWaBROFE_FGbvodA",
"eyJlbmMiOiJBMTkyQ0JDLUhTMzg0IiwiYWxnIjoiUlNBLU9BRVAifQ.eKEOIJUJpXmO_ghH_nGCJmoEspqKyiy3D5l0P8lKutlo8AuYHPQlgOsaFYnDkypyUVWd9zi-JaQuCeo7dzoBiS1L71nAZo-SUoN0anQBkVuyuRjr-deJMhPPfq1H86tTk-4rKzPr1Ivd2RGXMtWsrUpNGk81r1v8DdMntLE7UxZQqT34ONuZg1IXnD_U6di7k07unI29zuU1ySeUr6w1YPw5aUDErMlpZcEJWrgOEYWaS2nuC8sWGlPGYEjqkACMFGn-y40UoS_JatNZO6gHK3SKZnXD7vN5NAaMo_mFNbh50e1t_zO8DaUdLtXPOBLcx_ULoteNd9H8HyDGWqwAPw.0xmtzJfeVMoIT1Cp68QrXA.841l1aA4c3uvSYfw6l180gn5JZQjL53WQ5fr8ejtvoI.lojzeWql_3gDq-AoaIbl_aGQRH_54w_f",
"eyJlbmMiOiJBMjU2Q0JDLUhTNTEyIiwiYWxnIjoiUlNBLU9BRVAifQ.D0QkvIXR1TL7dIHWuPNMybmmD8UPyQd1bRKjRDNbA2HmKGpamCtcJmpNB_EetNFe-LDmhe44BYI_XN2wIBbYURKgDK_WG9BH0LQw_nCVqQ-sKqjtj3yQeytXhLHYTDmiF0TO-uW-RFR7GbPAdARBfuf4zj82r_wDD9sD5WSCGx89iPfozDOYQ_OLwdL2WD99VvDyfwS3ZhxA-9IMSYv5pwqPkxj4C0JdjCqrN0YNrZn_1ORgjtsVmcWXsmusObTozUGA7n5GeVepfZdU1vrMulAwdRYqOYtlqKaOpFowe9xFN3ncBG7wb4f9pmzbS_Dgt-1_Ii_4SEB9GQ4NiuBZ0w.N4AZeCxMGUv52A0UVJsaZw.5eHOGbZdtahnp3l_PDY-YojYib4ft4SRmdsQ2kggrTs.WsmGH8ZDv4ctBFs7qsQvw2obe4dVToRcAQaZ3PYL34E",
"eyJlbmMiOiJBMTI4R0NNIiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.fDTxO_ZzZ3Jdrdw-bxvg7u-xWB2q1tp3kI5zH6JfhLUm4h6rt9qDA_wZlRym8-GzEtkUjkTtQGs6HgQx_qlyy8ylCakY5GHsNhCG4m0UNhRiNfcasAs03JSXfON9-tfTJimWD9n4k5OHHhvcrsCW1G3jYeLsK9WHCGRIhNz5ULbo8HBrCTbmZ6bOEQ9mqhdssLpdV24HDpebotf3bgPJqoaTfWU6Uy7tLmPiNuuNRLQ-iTpLyNMTVvGqqZhpcV3lAEN5l77QabI5xLJYucvYjrXQhAEZ7YXO8oRYhGkdG2XXIRcwr87rBeRH-47HAyhZgF_PBPBhhrJNS9UNMqdfBw.FvU4_s7Md6vxnXWd.fw29Q4_gHt4f026DPPV-CNebQ8plJ6IVLX8._apBZrw7WsT8HOmxgCrTwA",
"eyJlbmMiOiJBMTkyR0NNIiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.bYuorK-rHMbO4c2CRWtvyOEaM1EN-o-wLRZ0wFWRX9mCXQ-iTNarZn7ksYM1XnGmZ4u3CSowX1Hpca9Rg72_VJCmKapqCT7r3YfasN4_oeLwuSKI_gT-uVOznod97tn3Gf_EDv0y1V4H0k9BEIFGbajAcG1znTD_ODY3j2KZJxisfrsBoslc6N-HI0kKZMC2hSGuHOcOf8HN1sTE-BLqZCtoj-zxQECJK8Wh14Ih4jzzdmmiu_qmSR780K6su-4PRt3j8uY7oCiLBfwpCsCmhJgp8rKd91zoedZmamfvX38mJIfE52j4fG6HmIYw9Ov814fk9OffV6tzixjcg54Q2g.yeVJz4aSh2s-GUr9.TBzzWP5llEiDdugpP2SmPf2U4MEGG9EoPWk.g25UoWpsBaOd45J__FX7mA",
"eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.h9tFtmh762JuffBxlSQbJujCyI4Zs9yc3IOb1yR8g65W4ZHosIvzVGHWbShj4EY9MNrz-RbKtHfqQGGzDeo3Xb4-HcQ2ZDHyWoUg7VfA8JafJ5zIKL1npz8eUExOVMLsAaRfHg8qNfczodg3egoSmX5Q-nrx4DeidDSXYZaZjV0C72stLTPcuQ7XPV7z1tvERAkqpvcsRmJn_PiRNxIbAgoyHMJ4Gijuzt1bWZwezlxYmw0TEuwCTVC2fl9NJTZyxOntS1Lcm-WQGlPkVYeVgYTOQXLlp7tF9t-aAvYpth2oWGT6Y-hbPrjx_19WaKD0XyWCR46V32DlXEVDP3Xl2A.NUgfnzQyEaJjzt9r.k2To43B2YVWMeR-w3n4Pr2b5wYq2o87giHk.X8_QYCg0IGnn1pJqe8p_KA",
"eyJlbmMiOiJBMTI4Q0JDLUhTMjU2IiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.EDq6cNP6Yp1sds5HZ4CkXYp7bs9plIYVZScKvuyxUy0H1VyBC_YWg0HvndPNb-vwh1LA6KMxRazlOwJ9iPR9YzHnYmGgPM3Je_ZzBfiPlRfq6hQBpGnNaypBI1XZ2tyFBhulsVLqyJe2SmM2Ud00kasOdMYgcN8FNFzq7IOE7E0FUQkIwLdUL1nrzepiYDp-5bGkxWRcL02cYfdqdm00G4m0GkUxAmdxa3oPNxZlt2NeBI_UVWQSgJE-DJVJQkDcyA0id27TV2RCDnmujYauNT_wYlyb0bFDx3pYzzNXfAXd4wHZxt75QaLZ5APJ0EVfiXJ0qki6kT-GRVmOimUbQA.vTULZL7LvS0WD8kR8ZUtLg.mb2f0StEmmkuuvsyz8UplMvF58FtZzlu8eEwzvPUvN0.hbhveEN40V-pgG2hSVgyKg",
"eyJlbmMiOiJBMTkyQ0JDLUhTMzg0IiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.DuYk92p7u-YIN-JKn-XThmlVcnhU9x5TieQ2uhsLQVNlo0iWC9JJPP6bT6aI6u_1BIS3yE8_tSGGL7eM-zyEk6LuTqSWFRaZcZC06d0MnS9eYZcw1T2D17fL-ki-NtCaTahJD7jE2s0HevRVW49YtL-_V8whnO_EyVjvXIAQlPYqhH_o-0Nzcpng9ggdAnuF2rY1_6iRPYFJ3BLQvG1oWhyJ9s6SBttlOa0i6mmFCVLHx6sRpdGAB3lbCL3wfmHq4tpIv77gfoYUNP0SNff-zNmBXF_wp3dCntLZFTjbfMpGyHlruF_uoaLqwdjYpUGNUFVUoeSiMnSbMKm9NxiDgQ.6Mdgcqz7bMU1UeoAwFC8pg.W36QWOlBaJezakUX5FMZzbAgeAu_R14AYKZCQmuhguw.5OeyIJ03olxmJft8uBmjuOFQPWNZMYLI",
"eyJlbmMiOiJBMjU2Q0JDLUhTNTEyIiwiYWxnIjoiUlNBLU9BRVAtMjU2In0.ECulJArWFsPL2FlpCN0W8E7IseSjJg1cZqE3wz5jk9gvwgNForAUEv5KYZqhNI-p5IxkGV0f8K6Y2X8pWzbLwiPIjZe8_dVqHYJoINxqCSgWLBhz0V36qL9Nc_xARTBk4-ZteIu75NoXVeos9gNvFnkOCj4tm-jGo8z8EFO9XfODgjhiR4xv8VqUtvrkjo9GQConaga5zpV-J4JQlXbdqbDjnuwacnJAxYpFyuemqcgqsl6BnFX3tovGkmSUPqcvF1A6tiHqr-TEmcgVqo5C3xswknRBKTQRM00iAmJ92WlVdkoOCx6E6O7cVHFawZ14BLzWzm66Crb4tv0ucYvk_Q.mxolwUaoj5S5kHCfph0w8g.nFpgYdnYg3blHCCEi2XXQGkkKQBXs2OkZaH11m3PRvk.k8BAVT4EcyrUFVIKr-KOSPbF89xyL0Vri2rFTu2iIWM",
}
for _, msg := range rsaSampleMessages {
obj, err := ParseEncrypted(msg)
if err != nil {
t.Error("unable to parse message", msg, err)
continue
}
plaintext, err := obj.Decrypt(rsaPrivateKey)
if err != nil {
t.Error("unable to decrypt message", msg, err)
continue
}
if string(plaintext) != "Lorem ipsum dolor sit amet" {
t.Error("plaintext is not what we expected for msg", msg)
}
}
}
// Test vectors generated with nimbus-jose-jwt
func TestSampleNimbusJWEMessagesAESKW(t *testing.T) {
aesTestKeys := [][]byte{
fromHexBytes("DF1FA4F36FFA7FC42C81D4B3C033928D"),
fromHexBytes("DF1FA4F36FFA7FC42C81D4B3C033928D95EC9CDC2D82233C"),
fromHexBytes("DF1FA4F36FFA7FC42C81D4B3C033928D95EC9CDC2D82233C333C35BA29044E90"),
}
aesSampleMessages := [][]string{
[]string{
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTI4R0NNIiwidGFnIjoib2ZMd2Q5NGloVWFRckJ0T1pQUDdjUSIsImFsZyI6IkExMjhHQ01LVyIsIml2IjoiV2Z3TnN5cjEwWUFjY2p2diJ9.9x3RxdqIS6P9xjh93Eu1bQ.6fs3_fSGt2jull_5.YDlzr6sWACkFg_GU5MEc-ZEWxNLwI_JMKe_jFA.f-pq-V7rlSSg_q2e1gDygw",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTkyR0NNIiwidGFnIjoic2RneXB1ckFjTEFzTmZJU0lkZUNpUSIsImFsZyI6IkExMjhHQ01LVyIsIml2IjoieVFMR0dCdDJFZ0c1THdyViJ9.arslKo4aKlh6f4s0z1_-U-8JbmhAoZHN.Xw2Q-GX98YXwuc4i.halTEWMWAYZbv-qOD52G6bte4x6sxlh1_VpGEA.Z1spn016v58cW6Q2o0Qxag",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMjU2R0NNIiwidGFnIjoicTNzejF5VUlhbVBDYXJfZ05kSVJqQSIsImFsZyI6IkExMjhHQ01LVyIsIml2IjoiM0ZRM0FsLWJWdWhmcEIyQyJ9.dhVipWbzIdsINttuZM4hnjpHvwEHf0VsVrOp4GAg01g.dk7dUyt1Qj13Pipw.5Tt70ONATF0BZAS8dBkYmCV7AQUrfb8qmKNLmw.A6ton9MQjZg0b3C0QcW-hg",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2IiwidGFnIjoiUHNpTGphZnJZNE16UlRmNlBPLTZfdyIsImFsZyI6IkExMjhHQ01LVyIsIml2IjoiSUFPbnd2ODR5YXFEaUxtbSJ9.swf92_LyCvjsvkynHTuMNXRl_MX2keU-fMDWIMezHG4.LOp9SVIXzs4yTnOtMyXZYQ.HUlXrzqJ1qXYl3vUA-ydezCg77WvJNtKdmZ3FPABoZw.8UYl1LOofQLAxHHvWqoTbg",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTkyQ0JDLUhTMzg0IiwidGFnIjoiWGRndHQ5dUVEMVlVeU1rVHl6M3lqZyIsImFsZyI6IkExMjhHQ01LVyIsIml2IjoiWF90V2RhSmh6X3J1SHJvQSJ9.JQ3dS1JSgzIFi5M9ig63FoFU1nHBTmPwXY_ovNE2m1JOSUvHtalmihIuraPDloCf.e920JVryUIWt7zJJQM-www.8DUrl4LmsxIEhRr9RLTHG9tBTOcwXqEbQHAJd_qMHzE.wHinoqGUhL4O7lx125kponpwNtlp8VGJ",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMjU2Q0JDLUhTNTEyIiwidGFnIjoicGgyaTdoY0FWNlh3ZkQta1RHYlVXdyIsImFsZyI6IkExMjhHQ01LVyIsIml2IjoiaG41Smk4Wm1rUmRrSUxWVSJ9._bQlJXl22dhsBgYPhkxUyinBNi871teGWbviOueWj2PqG9OPxIc9SDS8a27YLSVDMircd5Q1Df28--vcXIABQA.DssmhrAg6w_f2VDaPpxTbQ.OGclEmqrxwvZqAfn7EgXlIfXgr0wiGvEbZz3zADnqJs.YZeP0uKVEiDl8VyC-s20YN-RbdyGNsbdtoGDP3eMof8",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTI4R0NNIiwiYWxnIjoiQTEyOEtXIn0.TEMcXEoY8WyqGjYs5GZgS-M_Niwu6wDY.i-26KtTt51Td6Iwd.wvhkagvPsLj3QxhPBbfH_th8OqxisUtme2UadQ.vlfvBPv3bw2Zk2H60JVNLQ",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTkyR0NNIiwiYWxnIjoiQTEyOEtXIn0.gPaR6mgQ9TUx05V6DRfgTQeZxl0ZSzBa5uQd-qw6yLs.MojplOD77FkMooS-.2yuD7dKR_C3sFbhgwiBccKKOF8DrSvNiwX7wPQ.qDKUbSvMnJv0qifjpWC14g",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiQTEyOEtXIn0.Fg-dgSkUW1KEaL5YDPoWHNL8fpX1WxWVLA9OOWsjIFhQVDKyUZI7BQ.mjRBpyJTZf7H-quf.YlNHezMadtaSKp23G-ozmYhHOeHwuJnvWGTtGg.YagnR7awBItUlMDo4uklvg",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2IiwiYWxnIjoiQTEyOEtXIn0.x1vYzUE-E2XBWva9OPuwtqfQaf9rlJCIBAyAe6N2q2kWfJrkxGxFsQ.gAwe78dyODFaoP2IOityAA.Yh5YfovkWxGBNAs1sVhvXow_2izHHsBiYEc9JYD6kVg.mio1p3ncp2wLEaEaRa7P0w",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTkyQ0JDLUhTMzg0IiwiYWxnIjoiQTEyOEtXIn0.szGrdnmF7D5put2aRBvSSFfp0vRgkRGYaafijJIqAF6PWd1IxsysZRV8aQkQOW1cB6d0fXsTfYM.Ru25LVOOk4xhaK-cIZ0ThA.pF9Ok5zot7elVqXFW5YYHV8MuF9gVGzpQnG1XDs_g_w.-7la0uwcNPpteev185pMHZjbVDXlrec8",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMjU2Q0JDLUhTNTEyIiwiYWxnIjoiQTEyOEtXIn0.cz-hRv0xR5CnOcnoRWNK8Q9poyVYzRCVTjfmEXQN6xPOZUkJ3zKNqb8Pir_FS0o2TVvxmIbuxeISeATTR2Ttx_YGCNgMkc93.SF5rEQT94lZR-UORcMKqGw.xphygoU7zE0ZggOczXCi_ytt-Evln8CL-7WLDlWcUHg.5h99r8xCCwP2PgDbZqzCJ13oFfB2vZWetD5qZjmmVho",
},
[]string{
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTI4R0NNIiwidGFnIjoiVWR5WUVKdEJ5ZTA5dzdjclY0cXI1QSIsImFsZyI6IkExOTJHQ01LVyIsIml2IjoiZlBBV0QwUmdSbHlFdktQcCJ9.P1uTfTuH-imL-NJJMpuTRA.22yqZ1NIfx3KNPgc.hORWZaTSgni1FS-JT90vJly-cU37qTn-tWSqTg.gMN0ufXF92rSXupTtBNkhA",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTkyR0NNIiwidGFnIjoiOU9qX3B2LTJSNW5lZl9YbWVkUWltUSIsImFsZyI6IkExOTJHQ01LVyIsIml2IjoiY3BybGEwYUYzREVQNmFJTSJ9.6NVpAm_APiC7km2v-oNR8g23K9U_kf1-.jIg-p8tNwSvwxch0.1i-GPaxS4qR6Gy4tzeVtSdRFRSKQSMpmn-VhzA.qhFWPqtA6vVPl7OM3DThsA",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMjU2R0NNIiwidGFnIjoiOVc3THg3MVhGQVJCb3NaLVZ5dXc4ZyIsImFsZyI6IkExOTJHQ01LVyIsIml2IjoiZ1N4ZE5heFdBSVBRR0tHYiJ9.3YjPz6dVQwAtCekvtXiHZrooOUlmCsMSvyfwmGwdrOA.hA_C0IDJmGaRzsB0.W4l7OPqpFxiVOZTGfAlRktquyRTo4cEOk9KurQ.l4bGxOkO_ql_jlPo3Oz3TQ",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2IiwidGFnIjoiOHJYbWl2WXFWZjNfbHhhd2NUbHJoUSIsImFsZyI6IkExOTJHQ01LVyIsIml2IjoiVXBWeXprVTNKcjEwYXRqYyJ9.8qft-Q_xqUbo5j_aVrVNHchooeLttR4Kb6j01O8k98M.hXO-5IKBYCL9UdwBFVm0tg.EBM4lCZX_K6tfqYmfoDxVPHcf6cT--AegXTTjfSqsIw.Of8xUvEQSh3xgFT3uENnAg",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTkyQ0JDLUhTMzg0IiwidGFnIjoiVnItSnVaX0tqV2hSWWMzdzFwZ3cwdyIsImFsZyI6IkExOTJHQ01LVyIsIml2IjoiRGg2R3dISVBVS3ljZGNZeCJ9.YSEDjCnGWr_n9H94AvLoRnwm6bdU9w6-Q67k-QQRVcKRd6673pgH9zEF9A9Dt6o1.gcmVN4kxqBuMq6c7GrK3UQ.vWzJb0He6OY1lhYYjYS7CLh55REAAq1O7yNN-ND4R5Q.OD0B6nwyFaDr_92ysDOtlVnJaeoIqhGw",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMjU2Q0JDLUhTNTEyIiwidGFnIjoieEtad1BGYURpQ3NqUnBqZUprZHhmZyIsImFsZyI6IkExOTJHQ01LVyIsIml2IjoieTVHRFdteXdkb2R1SDJlYyJ9.AW0gbhWqlptOQ1y9aoNVwrTIIkBfrp33C2OWJsbrDRk6lhxg_IgFhMDTE37moReySGUtttC4CXQD_7etHmd3Hw.OvKXK-aRKlXHOpJQ9ZY_YQ.Ngv7WarDDvR2uBj_DavPAR3DYuIaygvSSdcHrc8-ZqM.MJ6ElitzFCKf_0h5fIJw8uOLC6ps7dKZPozF8juQmUY",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTI4R0NNIiwiYWxnIjoiQTE5MktXIn0.8qu63pppcSvp1vv37WrZ44qcCTg7dQMA.cDp-f8dJTrDEpZW4.H6OBJYs4UvFR_IZHLYQZxB6u9a0wOdAif2LNfQ.1dB-id0UIwRSlmwHx5BJCg",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTkyR0NNIiwiYWxnIjoiQTE5MktXIn0._FdoKQvC8qUs7K0upriEihUwztK8gOwonXpOxdIwrfs.UO38ok8gDdpLVa1T.x1GvHdVCy4fxoQRg-OQK4Ez3jDOvu9gllLPeEA.3dLeZGIprh_nHizOTVi1xw",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiQTE5MktXIn0.uzCJskgSIK6VkjJIu-dQi18biqaY0INc_A1Ehx0oESafgtR99_n4IA.W2eKK8Y14WwTowI_.J2cJC7R6Bz6maR0s1UBMPyRi5BebNUAmof4pvw.-7w6htAlc4iUsOJ6I04rFg",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2IiwiYWxnIjoiQTE5MktXIn0.gImQeQETp_6dfJypFDPLlv7c5pCzuq86U16gzrLiCXth6X9XfxJpvQ.YlC4MxjtLWrsyEvlFhvsqw.Vlpvmg9F3gkz4e1xG01Yl2RXx-jG99rF5UvCxOBXSLc.RZUrU_FoR5bG3M-j3GY0Dw",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTkyQ0JDLUhTMzg0IiwiYWxnIjoiQTE5MktXIn0.T2EfQ6Tu2wJyRMgZzfvBYmQNCCfdMudMrg86ibEMVAOUKJPtR3WMPEb_Syy9p2VjrLKRlv7nebo.GPc8VbarPPRtzIRATB8NsA.ugPCqLvVLwh55bWlwjsFkmWzJ31z5z-wuih2oJqmG_U.m7FY3EjvV6mKosEYJ5cY7ezFoVQoJS8X",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMjU2Q0JDLUhTNTEyIiwiYWxnIjoiQTE5MktXIn0.OgLMhZ-2ZhslQyHfzOfyC-qmT6bNg9AdpP59B4jtyxWkQu3eW475WCdiAjojjeyBtVRGQ5vOomwaOIFejY_IekzH6I_taii3.U9x44MF6Wyz5TIwIzwhoxQ.vK7yvSF2beKdNxNY_7n4XdF7JluCGZoxdFJyTJVkSmI.bXRlI8KL-g7gpprQxGmXjVYjYghhWJq7mlCfWI8q2uA",
},
[]string{
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTI4R0NNIiwidGFnIjoiR3BjX3pfbjduZjJVZlEtWGdsaTBaQSIsImFsZyI6IkEyNTZHQ01LVyIsIml2IjoiUk40eUdhOVlvYlFhUmZ1TCJ9.Q4ukD6_hZpmASAVcqWJ9Wg.Zfhny_1WNdlp4fH-.3sekDCjkExQCcv28ZW4yrcFnz0vma3vgoenSXA.g8_Ird2Y0itTCDP61du-Yg",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTkyR0NNIiwidGFnIjoiWC05UkNVWVh4U3NRelcwelVJS01VUSIsImFsZyI6IkEyNTZHQ01LVyIsIml2IjoiY3JNMnJfa3RrdWpyQ1h5OSJ9.c0q2jCxxV4y1h9u_Xvn7FqUDnbkmNEG4.S_noOTZKuUo9z1l6.ez0RdA25vXMUGH96iXmj3DEVox0J7TasJMnzgg.RbuSPTte_NzTtEEokbc5Ig",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMjU2R0NNIiwidGFnIjoiWmwyaDFpUW11QWZWd2lJeVp5RHloZyIsImFsZyI6IkEyNTZHQ01LVyIsIml2Ijoib19xZmljb0N0NzNzRWo1QyJ9.NpJxRJ0aqcpekD6HU2u9e6_pL_11JXjWvjfeQnAKkZU.4c5qBcBBrMWi27Lf.NKwNIb4b6cRDJ1TwMKsPrjs7ADn6aNoBdQClVw.yNWmSSRBqQfIQObzj8zDqw",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2IiwidGFnIjoiMXdwVEI3LWhjdzZUVXhCbVh2UzdhUSIsImFsZyI6IkEyNTZHQ01LVyIsIml2IjoiOUdIVnZJaDZ0a09vX2pHUSJ9.MFgIhp9mzlq9hoPqqKVKHJ3HL79EBYtV4iNhD63yqiU.UzW5iq8ou21VpZYJgKEN8A.1gOEzA4uAPvHP76GMfs9uLloAV10mKaxiZVAeL7iQA0.i1X_2i0bCAz-soXF9bI_zw",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTkyQ0JDLUhTMzg0IiwidGFnIjoiNThocUtsSk15Y1BFUEFRUlNfSzlNUSIsImFsZyI6IkEyNTZHQ01LVyIsIml2IjoiUDh3aTBWMTluVnZqNXpkOSJ9.FXidOWHNFJODO74Thq3J2cC-Z2B8UZkn7SikeosU0bUK6Jx_lzzmUZ-Lafadpdpj.iLfcDbpuBKFiSfiBzUQc7Q.VZK-aD7BFspqfvbwa0wE2wwWxdomzk2IKMetFe8bI44.7wC6rJRGa4x48xbYMd6NH9VzK8uNn4Cb",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMjU2Q0JDLUhTNTEyIiwidGFnIjoicGcwOEpUcXdzMXdEaXBaRUlpVExoQSIsImFsZyI6IkEyNTZHQ01LVyIsIml2IjoiSlpodk9CdU1RUDFFZTZTNSJ9.wqVgTPm6TcYCTkpbwmn9sW4mgJROH2A3dIdSXo5oKIQUIVbQsmy7KXH8UYO2RS9slMGtb869C8o0My67GKg9dQ.ogrRiLlqjB1S5j-7a05OwA.2Y_LyqhU4S_RXMsB74bxcBacd23J2Sp5Lblw-sOkaUY.XGMiYoU-f3GaEzSvG41vpJP2DMGbeDFoWmkUGLUjc4M",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTI4R0NNIiwiYWxnIjoiQTI1NktXIn0.QiIZm9NYfahqYFIbiaoUhCCHjotHMkup.EsU0XLn4FjzzCILn.WuCoQkm9vzo95E7hxBtfYpt-Mooc_vmSTyzj6Q.NbeeYVy6gQPlmhoWDrZwaQ",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTkyR0NNIiwiYWxnIjoiQTI1NktXIn0.1ol3j_Lt0Os3UMe2Gypj0o8b77k0FSmqD7kNRNoMa9U.vZ2HMTgN2dgUd42h.JvNcy8-c8sYzOC089VtFSg2BOQx3YF8CqSTuJw.t03LRioWWKN3d7SjinU6SQ",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiQTI1NktXIn0.gbkk03l1gyrE9qGEMVtORiyyUqKsgzbqjLd8lw0RQ07WWn--TV4BgA.J8ThH4ac2UhSsMIP.g-W1piEGrdi3tNwQDJXpYm3fQjTf82mtVCrCOg.-vY05P4kiB9FgF2vwrSeXQ",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2IiwiYWxnIjoiQTI1NktXIn0.k86pQs7gmQIzuIWRFwesF32XY2xi1WbYxi7XUf_CYlOlehwGCTINHg.3NcC9VzfQgsECISKf4xy-g.v2amdo-rgeGsg-II_tvPukX9D-KAP27xxf2uQJ277Ws.E4LIE3fte3glAnPpnd8D9Q",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMTkyQ0JDLUhTMzg0IiwiYWxnIjoiQTI1NktXIn0.b8iN0Am3fCUvj7sBd7Z0lpfzBjh1MOgojV7J5rDfrcTU3b35RGYgEV1RdcrtUTBgUwITDjmU7jM.wsSDBFghDga_ERv36I2AOg.6uJsucCb2YReFOJGBdo4zidTIKLUmZBIXfm_M0AJpKk.YwdAfXI3HHcw2wLSnfCRtw4huZQtSKhz",
"eyJ6aXAiOiJERUYiLCJlbmMiOiJBMjU2Q0JDLUhTNTEyIiwiYWxnIjoiQTI1NktXIn0.akY9pHCbkHPh5VpXIrX0At41XnJIKBR9iMMkf301vKeJNAZYJTxWzeJhFd-DhQ47tMctc3YYkwZkQ5I_9fGYb_f0oBcw4esh.JNwuuHud78h6S99NO1oBQQ.0RwckPYATBgvw67upkAQ1AezETHc-gh3rryz19i5ryc.3XClRTScgzfMgLCHxHHoRF8mm9VVGXv_Ahtx65PskKQ",
},
}
for i, msgs := range aesSampleMessages {
for _, msg := range msgs {
obj, err := ParseEncrypted(msg)
if err != nil {
t.Error("unable to parse message", msg, err)
continue
}
plaintext, err := obj.Decrypt(aesTestKeys[i])
if err != nil {
t.Error("unable to decrypt message", msg, err)
continue
}
if string(plaintext) != "Lorem ipsum dolor sit amet" {
t.Error("plaintext is not what we expected for msg", msg)
}
}
}
}
// Test vectors generated with jose4j
func TestSampleJose4jJWEMessagesECDH(t *testing.T) {
ecTestKey := &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: elliptic.P256(),
X: fromBase64Int("weNJy2HscCSM6AEDTDg04biOvhFhyyWvOHQfeF_PxMQ"),
Y: fromBase64Int("e8lnCO-AlStT-NJVX-crhB7QRYhiix03illJOVAOyck"),
},
D: fromBase64Int("VEmDZpDXXK8p8N0Cndsxs924q6nS1RXFASRl6BfUqdw"),
}
ecSampleMessages := []string{
"eyJhbGciOiJFQ0RILUVTIiwiZW5jIjoiQTEyOENCQy1IUzI1NiIsImVwayI6eyJrdHkiOiJFQyIsIngiOiJTQzAtRnJHUkVvVkpKSmg1TGhORmZqZnFXMC1XSUFyd3RZMzJzQmFQVVh3IiwieSI6ImFQMWlPRENveU9laTVyS1l2VENMNlRMZFN5UEdUN0djMnFsRnBwNXdiWFEiLCJjcnYiOiJQLTI1NiJ9fQ..3mifklTnTTGuA_etSUBBCw.dj8KFM8OlrQ3rT35nHcHZ7A5p84VB2OZb054ghSjS-M.KOIgnJjz87LGqMtikXGxXw",
"eyJhbGciOiJFQ0RILUVTIiwiZW5jIjoiQTE5MkNCQy1IUzM4NCIsImVwayI6eyJrdHkiOiJFQyIsIngiOiJUaHRGc0lRZ1E5MkZOYWFMbUFDQURLbE93dmNGVlRORHc4ampfWlJidUxjIiwieSI6IjJmRDZ3UXc3YmpYTm1nVThXMGpFbnl5ZUZkX3Y4ZmpDa3l1R29vTFhGM0EiLCJjcnYiOiJQLTI1NiJ9fQ..90zFayMkKc-fQC_19f6P3A.P1Y_7lMnfkUQOXW_en31lKZ3zAn1nEYn6fXLjmyVPrQ.hrgwy1cePVfhMWT0h-crKTXldglHZ-4g",
"eyJhbGciOiJFQ0RILUVTIiwiZW5jIjoiQTI1NkNCQy1IUzUxMiIsImVwayI6eyJrdHkiOiJFQyIsIngiOiI5R1Z6c3VKNWgySl96UURVUFR3WU5zUkFzVzZfY2RzN0pELVQ2RDREQ1ZVIiwieSI6InFZVGl1dVU4aTB1WFpoaS14VGlRNlZJQm5vanFoWENPVnpmWm1pR2lRTEUiLCJjcnYiOiJQLTI1NiJ9fQ..v2reRlDkIsw3eWEsTCc1NA.0qakrFdbhtBCTSl7EREf9sxgHBP9I-Xw29OTJYnrqP8.54ozViEBYYmRkcKp7d2Ztt4hzjQ9Vb5zCeijN_RQrcI",
"eyJhbGciOiJFQ0RILUVTK0EyNTZLVyIsImVuYyI6IkExMjhDQkMtSFMyNTYiLCJlcGsiOnsia3R5IjoiRUMiLCJ4IjoiOElUemg3VVFaaUthTWtfME9qX1hFaHZENXpUWjE2Ti13WVdjeTJYUC1tdyIsInkiOiJPNUJiVEk0bUFpU005ZmpCejBRU3pXaU5vbnl3cWlQLUN0RGgwdnNGYXNRIiwiY3J2IjoiUC0yNTYifX0.D3DP3wqPvJv4TYYfhnfrOG6nsM-MMH_CqGfnOGjgdXHNF7xRwEJBOA.WL9Kz3gNYA7S5Rs5mKcXmA.EmQkXhO_nFqAwxJWaM0DH4s3pmCscZovB8YWJ3Ru4N8.Bf88uzwfxiyTjpejU5B0Ng",
"eyJhbGciOiJFQ0RILUVTK0EyNTZLVyIsImVuYyI6IkExOTJDQkMtSFMzODQiLCJlcGsiOnsia3R5IjoiRUMiLCJ4IjoiMjlJMk4zRkF0UlBlNGhzYjRLWlhTbmVyV0wyTVhtSUN1LXJJaXhNSHpJQSIsInkiOiJvMjY1bzFReEdmbDhzMHQ0U1JROS00RGNpc3otbXh4NlJ6WVF4SktyeWpJIiwiY3J2IjoiUC0yNTYifX0.DRmsmXz6fCnLc_njDIKdpM7Oc4jTqd_yd9J94TOUksAstEUkAl9Ie3Wg-Ji_LzbdX2xRLXIimcw.FwJOHPQhnqKJCfxt1_qRnQ.ssx3q1ZYILsMTln5q-K8HVn93BVPI5ViusstKMxZzRs.zzcfzWNYSdNDdQ4CiHfymj0bePaAbVaT",
"eyJhbGciOiJFQ0RILUVTK0EyNTZLVyIsImVuYyI6IkEyNTZDQkMtSFM1MTIiLCJlcGsiOnsia3R5IjoiRUMiLCJ4IjoiRUp6bTViQnRzVXJNYTl2Y1Q2d1hZRXI3ZjNMcjB0N1V4SDZuZzdGcFF0VSIsInkiOiJRYTNDSDllVTFXYjItdFdVSDN3Sk9fTDVMZXRsRUlMQWNkNE9XR2tFd0hZIiwiY3J2IjoiUC0yNTYifX0.5WxwluZpVWAOJdVrsnDIlEc4_wfRE1gXOaQyx_rKkElNz157Ykf-JsAD7aEvXfx--NKF4js5zYyjeCtxWBhRWPOoNNZJlqV_.Iuo82-qsP2S1SgQQklAnrw.H4wB6XoLKOKWCu6Y3LPAEuHkvyvr-xAh4IBm53uRF8g._fOLKq0bqDZ8KNjni_MJ4olHNaYz376dV9eNmp9O9PU",
"eyJhbGciOiJFQ0RILUVTK0ExOTJLVyIsImVuYyI6IkExMjhDQkMtSFMyNTYiLCJlcGsiOnsia3R5IjoiRUMiLCJ4IjoiZktNSG5sRkoxajBTSnJ3WGtVWlpaX3BtWHdUQlJtcHhlaTkxdUpaczUycyIsInkiOiJLRkxKaXhEUTJQcjEybWp1aFdYb3pna2U1V3lhWnhmTWlxZkJ0OEJpbkRvIiwiY3J2IjoiUC0yNTYifX0.2LSD2Mw4tyYJyfsmpVmzBtJRd12jMEYGdlhFbaXIbKi5A33CGNQ1tg.s40aAjmZOvK8Us86FCBdHg.jpYSMAKp___oMCoWM495mTfbi_YC80ObeoCmGE3H_gs.A6V-jJJRY1yz24CaXGUbzg",
"eyJhbGciOiJFQ0RILUVTK0ExOTJLVyIsImVuYyI6IkExOTJDQkMtSFMzODQiLCJlcGsiOnsia3R5IjoiRUMiLCJ4IjoiSDRxcFUzeWtuRktWRnV4SmxLa3NZSE5ieHF3aXM0WWtCVVFHVE1Td05JQSIsInkiOiJHb0lpRUZaUGRRSHJCbVR4ZTA3akJoZmxrdWNqUjVoX1QwNWVXc3Zib0prIiwiY3J2IjoiUC0yNTYifX0.KTrwwV2uzD--gf3PGG-kjEAGgi7u0eMqZPZfa4kpyFGm3x8t2m1NHdz3t9rfiqjuaqsxPKhF4gs.cu16fEOzYaSxhHu_Ht9w4g.BRJdxVBI9spVtY5KQ6gTR4CNcKvmLUMKZap0AO-RF2I.DZyUaa2p6YCIaYtjWOjC9GN_VIYgySlZ",
"eyJhbGciOiJFQ0RILUVTK0ExOTJLVyIsImVuYyI6IkEyNTZDQkMtSFM1MTIiLCJlcGsiOnsia3R5IjoiRUMiLCJ4IjoieDBYSGRkSGM2Q0ktSnlfbUVMOEZZRExhWnV0UkVFczR4c3BMQmcwZk1jbyIsInkiOiJEa0xzOUJGTlBkTTVTNkpLYVJ3cnV1TWMwcUFzWW9yNW9fZWp6NXBNVXFrIiwiY3J2IjoiUC0yNTYifX0.mfCxJ7JYIqTMqcAh5Vp2USF0eF7OhOeluqda7YagOUJNwxA9wC9o23DSoLUylfrZUfanZrJJJcG69awlv-LY7anOLHlp3Ht5.ec48A_JWb4qa_PVHWZaTfQ.kDAjIDb3LzJpfxNh-DiAmAuaKMYaOGSTb0rkiJLuVeY.oxGCpPlii4pr89XMk4b9s084LucTqPGU6TLbOW2MZoc",
"eyJhbGciOiJFQ0RILUVTK0ExMjhLVyIsImVuYyI6IkExMjhDQkMtSFMyNTYiLCJlcGsiOnsia3R5IjoiRUMiLCJ4IjoiQXB5TnlqU2d0bmRUcFg0eENYenNDRnZva1l3X18weXg2dGRUYzdPUUhIMCIsInkiOiJYUHdHMDVDaW1vOGlhWmxZbDNsMEp3ZllhY1FZWHFuM2RRZEJUWFpldDZBIiwiY3J2IjoiUC0yNTYifX0.yTA2PwK9IPqkaGPenZ9R-gOn9m9rvcSEfuX_Nm8AkuwHIYLzzYeAEA.ZW1F1iyHYKfo-YoanNaIVg.PouKQD94DlPA5lbpfGJXY-EJhidC7l4vSayVN2vVzvA.MexquqtGaXKUvX7WBmD4bA",
"eyJhbGciOiJFQ0RILUVTK0ExMjhLVyIsImVuYyI6IkExOTJDQkMtSFMzODQiLCJlcGsiOnsia3R5IjoiRUMiLCJ4IjoiaDRWeGNzNVUzWk1fTlp4WmJxQ3hMTVB5UmEtR2ktSVNZa0xDTzE1RHJkZyIsInkiOiJFeVotS3dWNVE5OXlnWk5zU0lpSldpR3hqbXNLUk1WVE5sTTNSd1VYTFRvIiwiY3J2IjoiUC0yNTYifX0.wo56VISyL1QAbi2HLuVut5NGF2FvxKt7B8zHzJ3FpmavPozfbVZV08-GSYQ6jLQWJ4xsO80I4Kg.3_9Bo5ozvD96WHGhqp_tfQ.48UkJ6jk6WK70QItb2QZr0edKH7O-aMuVahTEeqyfW4.ulMlY2tbC341ct20YSmNdtc84FRz1I4g",
"eyJhbGciOiJFQ0RILUVTK0ExMjhLVyIsImVuYyI6IkEyNTZDQkMtSFM1MTIiLCJlcGsiOnsia3R5IjoiRUMiLCJ4IjoiN0xZRzZZWTJkel9ZaGNvNnRCcG1IX0tPREQ2X2hwX05tajdEc1c2RXgxcyIsInkiOiI5Y2lPeDcwUkdGT0tpVnBRX0NHQXB5NVlyeThDazBmUkpwNHVrQ2tjNmQ0IiwiY3J2IjoiUC0yNTYifX0.bWwW3J80k46HG1fQAZxUroko2OO8OKkeRavr_o3AnhJDMvp78OR229x-fZUaBm4uWv27_Yjm0X9T2H2lhlIli2Rl9v1PNC77.1NmsJBDGI1fDjRzyc4mtyA.9KfCFynQj7LmJq08qxAG4c-6ZPz1Lh3h3nUbgVwB0TI.cqech0d8XHzWfkWqgKZq1SlAfmO0PUwOsNVkuByVGWk",
}
for _, msg := range ecSampleMessages {
obj, err := ParseEncrypted(msg)
if err != nil {
t.Error("unable to parse message", msg, err)
continue
}
plaintext, err := obj.Decrypt(ecTestKey)
if err != nil {
t.Error("unable to decrypt message", msg, err)
continue
}
if string(plaintext) != "Lorem ipsum dolor sit amet." {
t.Error("plaintext is not what we expected for msg", msg)
}
}
}

381
Godeps/_workspace/src/github.com/square/go-jose/jwk.go generated vendored Normal file
View File

@ -0,0 +1,381 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"encoding/json"
"fmt"
"math/big"
"reflect"
"strings"
)
// rawJsonWebKey represents a public or private key in JWK format, used for parsing/serializing.
type rawJsonWebKey struct {
Use string `json:"use,omitempty"`
Kty string `json:"kty,omitempty"`
Kid string `json:"kid,omitempty"`
Crv string `json:"crv,omitempty"`
Alg string `json:"alg,omitempty"`
K *byteBuffer `json:"k,omitempty"`
X *byteBuffer `json:"x,omitempty"`
Y *byteBuffer `json:"y,omitempty"`
N *byteBuffer `json:"n,omitempty"`
E *byteBuffer `json:"e,omitempty"`
// -- Following fields are only used for private keys --
// RSA uses D, P and Q, while ECDSA uses only D. Fields Dp, Dq, and Qi are
// completely optional. Therefore for RSA/ECDSA, D != nil is a contract that
// we have a private key whereas D == nil means we have only a public key.
D *byteBuffer `json:"d,omitempty"`
P *byteBuffer `json:"p,omitempty"`
Q *byteBuffer `json:"q,omitempty"`
Dp *byteBuffer `json:"dp,omitempty"`
Dq *byteBuffer `json:"dq,omitempty"`
Qi *byteBuffer `json:"qi,omitempty"`
}
// JsonWebKey represents a public or private key in JWK format.
type JsonWebKey struct {
Key interface{}
KeyID string
Algorithm string
Use string
}
// MarshalJSON serializes the given key to its JSON representation.
func (k JsonWebKey) MarshalJSON() ([]byte, error) {
var raw *rawJsonWebKey
var err error
switch key := k.Key.(type) {
case *ecdsa.PublicKey:
raw, err = fromEcPublicKey(key)
case *rsa.PublicKey:
raw = fromRsaPublicKey(key)
case *ecdsa.PrivateKey:
raw, err = fromEcPrivateKey(key)
case *rsa.PrivateKey:
raw, err = fromRsaPrivateKey(key)
case []byte:
raw, err = fromSymmetricKey(key)
default:
return nil, fmt.Errorf("square/go-jose: unknown key type '%s'", reflect.TypeOf(key))
}
if err != nil {
return nil, err
}
raw.Kid = k.KeyID
raw.Alg = k.Algorithm
raw.Use = k.Use
return json.Marshal(raw)
}
// UnmarshalJSON reads a key from its JSON representation.
func (k *JsonWebKey) UnmarshalJSON(data []byte) (err error) {
var raw rawJsonWebKey
err = json.Unmarshal(data, &raw)
if err != nil {
return err
}
var key interface{}
switch raw.Kty {
case "EC":
if raw.D != nil {
key, err = raw.ecPrivateKey()
} else {
key, err = raw.ecPublicKey()
}
case "RSA":
if raw.D != nil {
key, err = raw.rsaPrivateKey()
} else {
key, err = raw.rsaPublicKey()
}
case "oct":
key, err = raw.symmetricKey()
default:
err = fmt.Errorf("square/go-jose: unkown json web key type '%s'", raw.Kty)
}
if err == nil {
*k = JsonWebKey{Key: key, KeyID: raw.Kid, Algorithm: raw.Alg, Use: raw.Use}
}
return
}
// JsonWebKeySet represents a JWK Set object.
type JsonWebKeySet struct {
Keys []JsonWebKey `json:"keys"`
}
// Key convenience method returns keys by key ID. Specification states
// that a JWK Set "SHOULD" use distinct key IDs, but allows for some
// cases where they are not distinct. Hence method returns a slice
// of JsonWebKeys.
func (s *JsonWebKeySet) Key(kid string) []JsonWebKey {
var keys []JsonWebKey
for _, key := range s.Keys {
if key.KeyID == kid {
keys = append(keys, key)
}
}
return keys
}
const rsaThumbprintTemplate = `{"e":"%s","kty":"RSA","n":"%s"}`
const ecThumbprintTemplate = `{"crv":"%s","kty":"EC","x":"%s","y":"%s"}`
func ecThumbprintInput(curve elliptic.Curve, x, y *big.Int) (string, error) {
coordLength := curveSize(curve)
crv, err := curveName(curve)
if err != nil {
return "", err
}
return fmt.Sprintf(ecThumbprintTemplate, crv,
newFixedSizeBuffer(x.Bytes(), coordLength).base64(),
newFixedSizeBuffer(y.Bytes(), coordLength).base64()), nil
}
func rsaThumbprintInput(n *big.Int, e int) (string, error) {
return fmt.Sprintf(rsaThumbprintTemplate,
newBufferFromInt(uint64(e)).base64(),
newBuffer(n.Bytes()).base64()), nil
}
// Thumbprint computes the JWK Thumbprint of a key using the
// indicated hash algorithm.
func (k *JsonWebKey) Thumbprint(hash crypto.Hash) ([]byte, error) {
var input string
var err error
switch key := k.Key.(type) {
case *ecdsa.PublicKey:
input, err = ecThumbprintInput(key.Curve, key.X, key.Y)
case *ecdsa.PrivateKey:
input, err = ecThumbprintInput(key.Curve, key.X, key.Y)
case *rsa.PublicKey:
input, err = rsaThumbprintInput(key.N, key.E)
case *rsa.PrivateKey:
input, err = rsaThumbprintInput(key.N, key.E)
default:
return nil, fmt.Errorf("square/go-jose: unkown key type '%s'", reflect.TypeOf(key))
}
if err != nil {
return nil, err
}
h := hash.New()
h.Write([]byte(input))
return h.Sum(nil), nil
}
func (key rawJsonWebKey) rsaPublicKey() (*rsa.PublicKey, error) {
if key.N == nil || key.E == nil {
return nil, fmt.Errorf("square/go-jose: invalid RSA key, missing n/e values")
}
return &rsa.PublicKey{
N: key.N.bigInt(),
E: key.E.toInt(),
}, nil
}
func fromRsaPublicKey(pub *rsa.PublicKey) *rawJsonWebKey {
return &rawJsonWebKey{
Kty: "RSA",
N: newBuffer(pub.N.Bytes()),
E: newBufferFromInt(uint64(pub.E)),
}
}
func (key rawJsonWebKey) ecPublicKey() (*ecdsa.PublicKey, error) {
var curve elliptic.Curve
switch key.Crv {
case "P-256":
curve = elliptic.P256()
case "P-384":
curve = elliptic.P384()
case "P-521":
curve = elliptic.P521()
default:
return nil, fmt.Errorf("square/go-jose: unsupported elliptic curve '%s'", key.Crv)
}
if key.X == nil || key.Y == nil {
return nil, fmt.Errorf("square/go-jose: invalid EC key, missing x/y values")
}
return &ecdsa.PublicKey{
Curve: curve,
X: key.X.bigInt(),
Y: key.Y.bigInt(),
}, nil
}
func fromEcPublicKey(pub *ecdsa.PublicKey) (*rawJsonWebKey, error) {
if pub == nil || pub.X == nil || pub.Y == nil {
return nil, fmt.Errorf("square/go-jose: invalid EC key (nil, or X/Y missing)")
}
name, err := curveName(pub.Curve)
if err != nil {
return nil, err
}
size := curveSize(pub.Curve)
xBytes := pub.X.Bytes()
yBytes := pub.Y.Bytes()
if len(xBytes) > size || len(yBytes) > size {
return nil, fmt.Errorf("square/go-jose: invalid EC key (X/Y too large)")
}
key := &rawJsonWebKey{
Kty: "EC",
Crv: name,
X: newFixedSizeBuffer(xBytes, size),
Y: newFixedSizeBuffer(yBytes, size),
}
return key, nil
}
func (key rawJsonWebKey) rsaPrivateKey() (*rsa.PrivateKey, error) {
var missing []string
switch {
case key.N == nil:
missing = append(missing, "N")
case key.E == nil:
missing = append(missing, "E")
case key.D == nil:
missing = append(missing, "D")
case key.P == nil:
missing = append(missing, "P")
case key.Q == nil:
missing = append(missing, "Q")
}
if len(missing) > 0 {
return nil, fmt.Errorf("square/go-jose: invalid RSA private key, missing %s value(s)", strings.Join(missing, ", "))
}
rv := &rsa.PrivateKey{
PublicKey: rsa.PublicKey{
N: key.N.bigInt(),
E: key.E.toInt(),
},
D: key.D.bigInt(),
Primes: []*big.Int{
key.P.bigInt(),
key.Q.bigInt(),
},
}
if key.Dp != nil {
rv.Precomputed.Dp = key.Dp.bigInt()
}
if key.Dq != nil {
rv.Precomputed.Dq = key.Dq.bigInt()
}
if key.Qi != nil {
rv.Precomputed.Qinv = key.Qi.bigInt()
}
err := rv.Validate()
return rv, err
}
func fromRsaPrivateKey(rsa *rsa.PrivateKey) (*rawJsonWebKey, error) {
if len(rsa.Primes) != 2 {
return nil, ErrUnsupportedKeyType
}
raw := fromRsaPublicKey(&rsa.PublicKey)
raw.D = newBuffer(rsa.D.Bytes())
raw.P = newBuffer(rsa.Primes[0].Bytes())
raw.Q = newBuffer(rsa.Primes[1].Bytes())
return raw, nil
}
func (key rawJsonWebKey) ecPrivateKey() (*ecdsa.PrivateKey, error) {
var curve elliptic.Curve
switch key.Crv {
case "P-256":
curve = elliptic.P256()
case "P-384":
curve = elliptic.P384()
case "P-521":
curve = elliptic.P521()
default:
return nil, fmt.Errorf("square/go-jose: unsupported elliptic curve '%s'", key.Crv)
}
if key.X == nil || key.Y == nil || key.D == nil {
return nil, fmt.Errorf("square/go-jose: invalid EC private key, missing x/y/d values")
}
return &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: curve,
X: key.X.bigInt(),
Y: key.Y.bigInt(),
},
D: key.D.bigInt(),
}, nil
}
func fromEcPrivateKey(ec *ecdsa.PrivateKey) (*rawJsonWebKey, error) {
raw, err := fromEcPublicKey(&ec.PublicKey)
if err != nil {
return nil, err
}
if ec.D == nil {
return nil, fmt.Errorf("square/go-jose: invalid EC private key")
}
raw.D = newBuffer(ec.D.Bytes())
return raw, nil
}
func fromSymmetricKey(key []byte) (*rawJsonWebKey, error) {
return &rawJsonWebKey{
Kty: "oct",
K: newBuffer(key),
}, nil
}
func (key rawJsonWebKey) symmetricKey() ([]byte, error) {
if key.K == nil {
return nil, fmt.Errorf("square/go-jose: invalid OCT (symmetric) key, missing k value")
}
return key.K.bytes(), nil
}

View File

@ -0,0 +1,576 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"encoding/hex"
"encoding/json"
"fmt"
"math/big"
"reflect"
"testing"
)
func TestCurveSize(t *testing.T) {
size256 := curveSize(elliptic.P256())
size384 := curveSize(elliptic.P384())
size521 := curveSize(elliptic.P521())
if size256 != 32 {
t.Error("P-256 have 32 bytes")
}
if size384 != 48 {
t.Error("P-384 have 48 bytes")
}
if size521 != 66 {
t.Error("P-521 have 66 bytes")
}
}
func TestRoundtripRsaPrivate(t *testing.T) {
jwk, err := fromRsaPrivateKey(rsaTestKey)
if err != nil {
t.Error("problem constructing JWK from rsa key", err)
}
rsa2, err := jwk.rsaPrivateKey()
if err != nil {
t.Error("problem converting RSA private -> JWK", err)
}
if rsa2.N.Cmp(rsaTestKey.N) != 0 {
t.Error("RSA private N mismatch")
}
if rsa2.E != rsaTestKey.E {
t.Error("RSA private E mismatch")
}
if rsa2.D.Cmp(rsaTestKey.D) != 0 {
t.Error("RSA private D mismatch")
}
if len(rsa2.Primes) != 2 {
t.Error("RSA private roundtrip expected two primes")
}
if rsa2.Primes[0].Cmp(rsaTestKey.Primes[0]) != 0 {
t.Error("RSA private P mismatch")
}
if rsa2.Primes[1].Cmp(rsaTestKey.Primes[1]) != 0 {
t.Error("RSA private Q mismatch")
}
}
func TestRsaPrivateInsufficientPrimes(t *testing.T) {
brokenRsaPrivateKey := rsa.PrivateKey{
PublicKey: rsa.PublicKey{
N: rsaTestKey.N,
E: rsaTestKey.E,
},
D: rsaTestKey.D,
Primes: []*big.Int{rsaTestKey.Primes[0]},
}
_, err := fromRsaPrivateKey(&brokenRsaPrivateKey)
if err != ErrUnsupportedKeyType {
t.Error("expected unsupported key type error, got", err)
}
}
func TestRsaPrivateExcessPrimes(t *testing.T) {
brokenRsaPrivateKey := rsa.PrivateKey{
PublicKey: rsa.PublicKey{
N: rsaTestKey.N,
E: rsaTestKey.E,
},
D: rsaTestKey.D,
Primes: []*big.Int{
rsaTestKey.Primes[0],
rsaTestKey.Primes[1],
big.NewInt(3),
},
}
_, err := fromRsaPrivateKey(&brokenRsaPrivateKey)
if err != ErrUnsupportedKeyType {
t.Error("expected unsupported key type error, got", err)
}
}
func TestRoundtripEcPublic(t *testing.T) {
for i, ecTestKey := range []*ecdsa.PrivateKey{ecTestKey256, ecTestKey384, ecTestKey521} {
jwk, err := fromEcPublicKey(&ecTestKey.PublicKey)
ec2, err := jwk.ecPublicKey()
if err != nil {
t.Error("problem converting ECDSA private -> JWK", i, err)
}
if !reflect.DeepEqual(ec2.Curve, ecTestKey.Curve) {
t.Error("ECDSA private curve mismatch", i)
}
if ec2.X.Cmp(ecTestKey.X) != 0 {
t.Error("ECDSA X mismatch", i)
}
if ec2.Y.Cmp(ecTestKey.Y) != 0 {
t.Error("ECDSA Y mismatch", i)
}
}
}
func TestRoundtripEcPrivate(t *testing.T) {
for i, ecTestKey := range []*ecdsa.PrivateKey{ecTestKey256, ecTestKey384, ecTestKey521} {
jwk, err := fromEcPrivateKey(ecTestKey)
ec2, err := jwk.ecPrivateKey()
if err != nil {
t.Error("problem converting ECDSA private -> JWK", i, err)
}
if !reflect.DeepEqual(ec2.Curve, ecTestKey.Curve) {
t.Error("ECDSA private curve mismatch", i)
}
if ec2.X.Cmp(ecTestKey.X) != 0 {
t.Error("ECDSA X mismatch", i)
}
if ec2.Y.Cmp(ecTestKey.Y) != 0 {
t.Error("ECDSA Y mismatch", i)
}
if ec2.D.Cmp(ecTestKey.D) != 0 {
t.Error("ECDSA D mismatch", i)
}
}
}
func TestMarshalUnmarshal(t *testing.T) {
kid := "DEADBEEF"
for i, key := range []interface{}{ecTestKey256, ecTestKey384, ecTestKey521, rsaTestKey} {
for _, use := range []string{"", "sig", "enc"} {
jwk := JsonWebKey{Key: key, KeyID: kid, Algorithm: "foo"}
if use != "" {
jwk.Use = use
}
jsonbar, err := jwk.MarshalJSON()
if err != nil {
t.Error("problem marshaling", i, err)
}
var jwk2 JsonWebKey
err = jwk2.UnmarshalJSON(jsonbar)
if err != nil {
t.Error("problem unmarshalling", i, err)
}
jsonbar2, err := jwk2.MarshalJSON()
if err != nil {
t.Error("problem marshaling", i, err)
}
if !bytes.Equal(jsonbar, jsonbar2) {
t.Error("roundtrip should not lose information", i)
}
if jwk2.KeyID != kid {
t.Error("kid did not roundtrip JSON marshalling", i)
}
if jwk2.Algorithm != "foo" {
t.Error("alg did not roundtrip JSON marshalling", i)
}
if jwk2.Use != use {
t.Error("use did not roundtrip JSON marshalling", i)
}
}
}
}
func TestMarshalNonPointer(t *testing.T) {
type EmbedsKey struct {
Key JsonWebKey
}
keyJson := []byte(`{
"e": "AQAB",
"kty": "RSA",
"n": "vd7rZIoTLEe-z1_8G1FcXSw9CQFEJgV4g9V277sER7yx5Qjz_Pkf2YVth6wwwFJEmzc0hoKY-MMYFNwBE4hQHw"
}`)
var parsedKey JsonWebKey
err := json.Unmarshal(keyJson, &parsedKey)
if err != nil {
t.Error(fmt.Sprintf("Error unmarshalling key: %v", err))
return
}
ek := EmbedsKey{
Key: parsedKey,
}
out, err := json.Marshal(ek)
if err != nil {
t.Error(fmt.Sprintf("Error marshalling JSON: %v", err))
return
}
expected := "{\"Key\":{\"kty\":\"RSA\",\"n\":\"vd7rZIoTLEe-z1_8G1FcXSw9CQFEJgV4g9V277sER7yx5Qjz_Pkf2YVth6wwwFJEmzc0hoKY-MMYFNwBE4hQHw\",\"e\":\"AQAB\"}}"
if string(out) != expected {
t.Error("Failed to marshal embedded non-pointer JWK properly:", string(out))
}
}
func TestMarshalUnmarshalInvalid(t *testing.T) {
// Make an invalid curve coordinate by creating a byte array that is one
// byte too large, and setting the first byte to 1 (otherwise it's just zero).
invalidCoord := make([]byte, curveSize(ecTestKey256.Curve)+1)
invalidCoord[0] = 1
keys := []interface{}{
// Empty keys
&rsa.PrivateKey{},
&ecdsa.PrivateKey{},
// Invalid keys
&ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
// Missing values in pub key
Curve: elliptic.P256(),
},
},
&ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
// Invalid curve
Curve: nil,
X: ecTestKey256.X,
Y: ecTestKey256.Y,
},
},
&ecdsa.PrivateKey{
// Valid pub key, but missing priv key values
PublicKey: ecTestKey256.PublicKey,
},
&ecdsa.PrivateKey{
// Invalid pub key, values too large
PublicKey: ecdsa.PublicKey{
Curve: ecTestKey256.Curve,
X: big.NewInt(0).SetBytes(invalidCoord),
Y: big.NewInt(0).SetBytes(invalidCoord),
},
D: ecTestKey256.D,
},
nil,
}
for i, key := range keys {
jwk := JsonWebKey{Key: key}
_, err := jwk.MarshalJSON()
if err == nil {
t.Error("managed to serialize invalid key", i)
}
}
}
func TestWebKeyVectorsInvalid(t *testing.T) {
keys := []string{
// Invalid JSON
"{X",
// Empty key
"{}",
// Invalid RSA keys
`{"kty":"RSA"}`,
`{"kty":"RSA","e":""}`,
`{"kty":"RSA","e":"XXXX"}`,
`{"kty":"RSA","d":"XXXX"}`,
// Invalid EC keys
`{"kty":"EC","crv":"ABC"}`,
`{"kty":"EC","crv":"P-256"}`,
`{"kty":"EC","crv":"P-256","d":"XXX"}`,
`{"kty":"EC","crv":"ABC","d":"dGVzdA","x":"dGVzdA"}`,
`{"kty":"EC","crv":"P-256","d":"dGVzdA","x":"dGVzdA"}`,
}
for _, key := range keys {
var jwk2 JsonWebKey
err := jwk2.UnmarshalJSON([]byte(key))
if err == nil {
t.Error("managed to parse invalid key:", key)
}
}
}
// Test vectors from RFC 7520
var cookbookJWKs = []string{
// EC Public
stripWhitespace(`{
"kty": "EC",
"kid": "bilbo.baggins@hobbiton.example",
"use": "sig",
"crv": "P-521",
"x": "AHKZLLOsCOzz5cY97ewNUajB957y-C-U88c3v13nmGZx6sYl_oJXu9
A5RkTKqjqvjyekWF-7ytDyRXYgCF5cj0Kt",
"y": "AdymlHvOiLxXkEhayXQnNCvDX4h9htZaCJN34kfmC6pV5OhQHiraVy
SsUdaQkAgDPrwQrJmbnX9cwlGfP-HqHZR1"
}`),
// EC Private
stripWhitespace(`{
"kty": "EC",
"kid": "bilbo.baggins@hobbiton.example",
"use": "sig",
"crv": "P-521",
"x": "AHKZLLOsCOzz5cY97ewNUajB957y-C-U88c3v13nmGZx6sYl_oJXu9
A5RkTKqjqvjyekWF-7ytDyRXYgCF5cj0Kt",
"y": "AdymlHvOiLxXkEhayXQnNCvDX4h9htZaCJN34kfmC6pV5OhQHiraVy
SsUdaQkAgDPrwQrJmbnX9cwlGfP-HqHZR1",
"d": "AAhRON2r9cqXX1hg-RoI6R1tX5p2rUAYdmpHZoC1XNM56KtscrX6zb
KipQrCW9CGZH3T4ubpnoTKLDYJ_fF3_rJt"
}`),
// RSA Public
stripWhitespace(`{
"kty": "RSA",
"kid": "bilbo.baggins@hobbiton.example",
"use": "sig",
"n": "n4EPtAOCc9AlkeQHPzHStgAbgs7bTZLwUBZdR8_KuKPEHLd4rHVTeT
-O-XV2jRojdNhxJWTDvNd7nqQ0VEiZQHz_AJmSCpMaJMRBSFKrKb2wqV
wGU_NsYOYL-QtiWN2lbzcEe6XC0dApr5ydQLrHqkHHig3RBordaZ6Aj-
oBHqFEHYpPe7Tpe-OfVfHd1E6cS6M1FZcD1NNLYD5lFHpPI9bTwJlsde
3uhGqC0ZCuEHg8lhzwOHrtIQbS0FVbb9k3-tVTU4fg_3L_vniUFAKwuC
LqKnS2BYwdq_mzSnbLY7h_qixoR7jig3__kRhuaxwUkRz5iaiQkqgc5g
HdrNP5zw",
"e": "AQAB"
}`),
// RSA Private
stripWhitespace(`{"kty":"RSA",
"kid":"juliet@capulet.lit",
"use":"enc",
"n":"t6Q8PWSi1dkJj9hTP8hNYFlvadM7DflW9mWepOJhJ66w7nyoK1gPNqFMSQRy
O125Gp-TEkodhWr0iujjHVx7BcV0llS4w5ACGgPrcAd6ZcSR0-Iqom-QFcNP
8Sjg086MwoqQU_LYywlAGZ21WSdS_PERyGFiNnj3QQlO8Yns5jCtLCRwLHL0
Pb1fEv45AuRIuUfVcPySBWYnDyGxvjYGDSM-AqWS9zIQ2ZilgT-GqUmipg0X
OC0Cc20rgLe2ymLHjpHciCKVAbY5-L32-lSeZO-Os6U15_aXrk9Gw8cPUaX1
_I8sLGuSiVdt3C_Fn2PZ3Z8i744FPFGGcG1qs2Wz-Q",
"e":"AQAB",
"d":"GRtbIQmhOZtyszfgKdg4u_N-R_mZGU_9k7JQ_jn1DnfTuMdSNprTeaSTyWfS
NkuaAwnOEbIQVy1IQbWVV25NY3ybc_IhUJtfri7bAXYEReWaCl3hdlPKXy9U
vqPYGR0kIXTQRqns-dVJ7jahlI7LyckrpTmrM8dWBo4_PMaenNnPiQgO0xnu
ToxutRZJfJvG4Ox4ka3GORQd9CsCZ2vsUDmsXOfUENOyMqADC6p1M3h33tsu
rY15k9qMSpG9OX_IJAXmxzAh_tWiZOwk2K4yxH9tS3Lq1yX8C1EWmeRDkK2a
hecG85-oLKQt5VEpWHKmjOi_gJSdSgqcN96X52esAQ",
"p":"2rnSOV4hKSN8sS4CgcQHFbs08XboFDqKum3sc4h3GRxrTmQdl1ZK9uw-PIHf
QP0FkxXVrx-WE-ZEbrqivH_2iCLUS7wAl6XvARt1KkIaUxPPSYB9yk31s0Q8
UK96E3_OrADAYtAJs-M3JxCLfNgqh56HDnETTQhH3rCT5T3yJws",
"q":"1u_RiFDP7LBYh3N4GXLT9OpSKYP0uQZyiaZwBtOCBNJgQxaj10RWjsZu0c6I
edis4S7B_coSKB0Kj9PaPaBzg-IySRvvcQuPamQu66riMhjVtG6TlV8CLCYK
rYl52ziqK0E_ym2QnkwsUX7eYTB7LbAHRK9GqocDE5B0f808I4s",
"dp":"KkMTWqBUefVwZ2_Dbj1pPQqyHSHjj90L5x_MOzqYAJMcLMZtbUtwKqvVDq3
tbEo3ZIcohbDtt6SbfmWzggabpQxNxuBpoOOf_a_HgMXK_lhqigI4y_kqS1w
Y52IwjUn5rgRrJ-yYo1h41KR-vz2pYhEAeYrhttWtxVqLCRViD6c",
"dq":"AvfS0-gRxvn0bwJoMSnFxYcK1WnuEjQFluMGfwGitQBWtfZ1Er7t1xDkbN9
GQTB9yqpDoYaN06H7CFtrkxhJIBQaj6nkF5KKS3TQtQ5qCzkOkmxIe3KRbBy
mXxkb5qwUpX5ELD5xFc6FeiafWYY63TmmEAu_lRFCOJ3xDea-ots",
"qi":"lSQi-w9CpyUReMErP1RsBLk7wNtOvs5EQpPqmuMvqW57NBUczScEoPwmUqq
abu9V0-Py4dQ57_bapoKRu1R90bvuFnU63SHWEFglZQvJDMeAvmj4sm-Fp0o
Yu_neotgQ0hzbI5gry7ajdYy9-2lNx_76aBZoOUu9HCJ-UsfSOI8"}`),
}
// SHA-256 thumbprints of the above keys, hex-encoded
var cookbookJWKThumbprints = []string{
"747ae2dd2003664aeeb21e4753fe7402846170a16bc8df8f23a8cf06d3cbe793",
"747ae2dd2003664aeeb21e4753fe7402846170a16bc8df8f23a8cf06d3cbe793",
"f63838e96077ad1fc01c3f8405774dedc0641f558ebb4b40dccf5f9b6d66a932",
"0fc478f8579325fcee0d4cbc6d9d1ce21730a6e97e435d6008fb379b0ebe47d4",
}
func TestWebKeyVectorsValid(t *testing.T) {
for _, key := range cookbookJWKs {
var jwk2 JsonWebKey
err := jwk2.UnmarshalJSON([]byte(key))
if err != nil {
t.Error("unable to parse valid key:", key, err)
}
}
}
func TestThumbprint(t *testing.T) {
for i, key := range cookbookJWKs {
var jwk2 JsonWebKey
err := jwk2.UnmarshalJSON([]byte(key))
if err != nil {
t.Error("unable to parse valid key:", key, err)
}
tp, err := jwk2.Thumbprint(crypto.SHA256)
if err != nil {
t.Error("unable to compute thumbprint:", key, err)
}
tpHex := hex.EncodeToString(tp)
if cookbookJWKThumbprints[i] != tpHex {
t.Error("incorrect thumbprint:", i, cookbookJWKThumbprints[i], tpHex)
}
}
}
func TestMarshalUnmarshalJWKSet(t *testing.T) {
jwk1 := JsonWebKey{Key: rsaTestKey, KeyID: "ABCDEFG", Algorithm: "foo"}
jwk2 := JsonWebKey{Key: rsaTestKey, KeyID: "GFEDCBA", Algorithm: "foo"}
var set JsonWebKeySet
set.Keys = append(set.Keys, jwk1)
set.Keys = append(set.Keys, jwk2)
jsonbar, err := json.Marshal(&set)
if err != nil {
t.Error("problem marshalling set", err)
}
var set2 JsonWebKeySet
err = json.Unmarshal(jsonbar, &set2)
if err != nil {
t.Error("problem unmarshalling set", err)
}
jsonbar2, err := json.Marshal(&set2)
if err != nil {
t.Error("problem marshalling set", err)
}
if !bytes.Equal(jsonbar, jsonbar2) {
t.Error("roundtrip should not lose information")
}
}
var JWKSetDuplicates = stripWhitespace(`{
"keys": [{
"kty": "RSA",
"kid": "exclude-me",
"use": "sig",
"n": "n4EPtAOCc9AlkeQHPzHStgAbgs7bTZLwUBZdR8_KuKPEHLd4rHVTeT
-O-XV2jRojdNhxJWTDvNd7nqQ0VEiZQHz_AJmSCpMaJMRBSFKrKb2wqV
wGU_NsYOYL-QtiWN2lbzcEe6XC0dApr5ydQLrHqkHHig3RBordaZ6Aj-
oBHqFEHYpPe7Tpe-OfVfHd1E6cS6M1FZcD1NNLYD5lFHpPI9bTwJlsde
3uhGqC0ZCuEHg8lhzwOHrtIQbS0FVbb9k3-tVTU4fg_3L_vniUFAKwuC
LqKnS2BYwdq_mzSnbLY7h_qixoR7jig3__kRhuaxwUkRz5iaiQkqgc5g
HdrNP5zw",
"e": "AQAB"
}],
"keys": [{
"kty": "RSA",
"kid": "include-me",
"use": "sig",
"n": "n4EPtAOCc9AlkeQHPzHStgAbgs7bTZLwUBZdR8_KuKPEHLd4rHVTeT
-O-XV2jRojdNhxJWTDvNd7nqQ0VEiZQHz_AJmSCpMaJMRBSFKrKb2wqV
wGU_NsYOYL-QtiWN2lbzcEe6XC0dApr5ydQLrHqkHHig3RBordaZ6Aj-
oBHqFEHYpPe7Tpe-OfVfHd1E6cS6M1FZcD1NNLYD5lFHpPI9bTwJlsde
3uhGqC0ZCuEHg8lhzwOHrtIQbS0FVbb9k3-tVTU4fg_3L_vniUFAKwuC
LqKnS2BYwdq_mzSnbLY7h_qixoR7jig3__kRhuaxwUkRz5iaiQkqgc5g
HdrNP5zw",
"e": "AQAB"
}],
"custom": "exclude-me",
"custom": "include-me"
}`)
func TestDuplicateJWKSetMembersIgnored(t *testing.T) {
type CustomSet struct {
JsonWebKeySet
CustomMember string `json:"custom"`
}
data := []byte(JWKSetDuplicates)
var set CustomSet
json.Unmarshal(data, &set)
if len(set.Keys) != 1 {
t.Error("expected only one key in set")
}
if set.Keys[0].KeyID != "include-me" {
t.Errorf("expected key with kid: \"include-me\", got: %s", set.Keys[0].KeyID)
}
if set.CustomMember != "include-me" {
t.Errorf("expected custom member value: \"include-me\", got: %s", set.CustomMember)
}
}
func TestJWKSetKey(t *testing.T) {
jwk1 := JsonWebKey{Key: rsaTestKey, KeyID: "ABCDEFG", Algorithm: "foo"}
jwk2 := JsonWebKey{Key: rsaTestKey, KeyID: "GFEDCBA", Algorithm: "foo"}
var set JsonWebKeySet
set.Keys = append(set.Keys, jwk1)
set.Keys = append(set.Keys, jwk2)
k := set.Key("ABCDEFG")
if len(k) != 1 {
t.Errorf("method should return slice with one key not %d", len(k))
}
if k[0].KeyID != "ABCDEFG" {
t.Error("method should return key with ID ABCDEFG")
}
}
func TestJWKSymmetricKey(t *testing.T) {
sample1 := `{"kty":"oct","alg":"A128KW","k":"GawgguFyGrWKav7AX4VKUg"}`
sample2 := `{"kty":"oct","k":"AyM1SysPpbyDfgZld3umj1qzKObwVMkoqQ-EstJQLr_T-1qS0gZH75aKtMN3Yj0iPS4hcgUuTwjAzZr1Z9CAow","kid":"HMAC key used in JWS spec Appendix A.1 example"}`
var jwk1 JsonWebKey
json.Unmarshal([]byte(sample1), &jwk1)
if jwk1.Algorithm != "A128KW" {
t.Errorf("expected Algorithm to be A128KW, but was '%s'", jwk1.Algorithm)
}
expected1 := fromHexBytes("19ac2082e1721ab58a6afec05f854a52")
if !bytes.Equal(jwk1.Key.([]byte), expected1) {
t.Errorf("expected Key to be '%s', but was '%s'", hex.EncodeToString(expected1), hex.EncodeToString(jwk1.Key.([]byte)))
}
var jwk2 JsonWebKey
json.Unmarshal([]byte(sample2), &jwk2)
if jwk2.KeyID != "HMAC key used in JWS spec Appendix A.1 example" {
t.Errorf("expected KeyID to be 'HMAC key used in JWS spec Appendix A.1 example', but was '%s'", jwk2.KeyID)
}
expected2 := fromHexBytes(`
0323354b2b0fa5bc837e0665777ba68f5ab328e6f054c928a90f84b2d2502ebf
d3fb5a92d20647ef968ab4c377623d223d2e2172052e4f08c0cd9af567d080a3`)
if !bytes.Equal(jwk2.Key.([]byte), expected2) {
t.Errorf("expected Key to be '%s', but was '%s'", hex.EncodeToString(expected2), hex.EncodeToString(jwk2.Key.([]byte)))
}
}
func TestJWKSymmetricRoundtrip(t *testing.T) {
jwk1 := JsonWebKey{Key: []byte{1, 2, 3, 4}}
marshaled, err := jwk1.MarshalJSON()
if err != nil {
t.Errorf("failed to marshal valid JWK object", err)
}
var jwk2 JsonWebKey
err = jwk2.UnmarshalJSON(marshaled)
if err != nil {
t.Errorf("failed to unmarshal valid JWK object", err)
}
if !bytes.Equal(jwk1.Key.([]byte), jwk2.Key.([]byte)) {
t.Error("round-trip of symmetric JWK gave different raw keys")
}
}
func TestJWKSymmetricInvalid(t *testing.T) {
invalid := JsonWebKey{}
_, err := invalid.MarshalJSON()
if err == nil {
t.Error("excepted error on marshaling invalid symmetric JWK object")
}
var jwk JsonWebKey
err = jwk.UnmarshalJSON([]byte(`{"kty":"oct"}`))
if err == nil {
t.Error("excepted error on unmarshaling invalid symmetric JWK object")
}
}

253
Godeps/_workspace/src/github.com/square/go-jose/jws.go generated vendored Normal file
View File

@ -0,0 +1,253 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"encoding/json"
"fmt"
"strings"
)
// rawJsonWebSignature represents a raw JWS JSON object. Used for parsing/serializing.
type rawJsonWebSignature struct {
Payload *byteBuffer `json:"payload,omitempty"`
Signatures []rawSignatureInfo `json:"signatures,omitempty"`
Protected *byteBuffer `json:"protected,omitempty"`
Header *rawHeader `json:"header,omitempty"`
Signature *byteBuffer `json:"signature,omitempty"`
}
// rawSignatureInfo represents a single JWS signature over the JWS payload and protected header.
type rawSignatureInfo struct {
Protected *byteBuffer `json:"protected,omitempty"`
Header *rawHeader `json:"header,omitempty"`
Signature *byteBuffer `json:"signature,omitempty"`
}
// JsonWebSignature represents a signed JWS object after parsing.
type JsonWebSignature struct {
payload []byte
Signatures []Signature
}
// Signature represents a single signature over the JWS payload and protected header.
type Signature struct {
// Header fields, such as the signature algorithm
Header JoseHeader
// The actual signature value
Signature []byte
protected *rawHeader
header *rawHeader
original *rawSignatureInfo
}
// ParseSigned parses an encrypted message in compact or full serialization format.
func ParseSigned(input string) (*JsonWebSignature, error) {
input = stripWhitespace(input)
if strings.HasPrefix(input, "{") {
return parseSignedFull(input)
}
return parseSignedCompact(input)
}
// Get a header value
func (sig Signature) mergedHeaders() rawHeader {
out := rawHeader{}
out.merge(sig.protected)
out.merge(sig.header)
return out
}
// Compute data to be signed
func (obj JsonWebSignature) computeAuthData(signature *Signature) []byte {
var serializedProtected string
if signature.original != nil && signature.original.Protected != nil {
serializedProtected = signature.original.Protected.base64()
} else if signature.protected != nil {
serializedProtected = base64URLEncode(mustSerializeJSON(signature.protected))
} else {
serializedProtected = ""
}
return []byte(fmt.Sprintf("%s.%s",
serializedProtected,
base64URLEncode(obj.payload)))
}
// parseSignedFull parses a message in full format.
func parseSignedFull(input string) (*JsonWebSignature, error) {
var parsed rawJsonWebSignature
err := json.Unmarshal([]byte(input), &parsed)
if err != nil {
return nil, err
}
return parsed.sanitized()
}
// sanitized produces a cleaned-up JWS object from the raw JSON.
func (parsed *rawJsonWebSignature) sanitized() (*JsonWebSignature, error) {
if parsed.Payload == nil {
return nil, fmt.Errorf("square/go-jose: missing payload in JWS message")
}
obj := &JsonWebSignature{
payload: parsed.Payload.bytes(),
Signatures: make([]Signature, len(parsed.Signatures)),
}
if len(parsed.Signatures) == 0 {
// No signatures array, must be flattened serialization
signature := Signature{}
if parsed.Protected != nil && len(parsed.Protected.bytes()) > 0 {
signature.protected = &rawHeader{}
err := json.Unmarshal(parsed.Protected.bytes(), signature.protected)
if err != nil {
return nil, err
}
}
if parsed.Header != nil && parsed.Header.Nonce != "" {
return nil, ErrUnprotectedNonce
}
signature.header = parsed.Header
signature.Signature = parsed.Signature.bytes()
// Make a fake "original" rawSignatureInfo to store the unprocessed
// Protected header. This is necessary because the Protected header can
// contain arbitrary fields not registered as part of the spec. See
// https://tools.ietf.org/html/draft-ietf-jose-json-web-signature-41#section-4
// If we unmarshal Protected into a rawHeader with its explicit list of fields,
// we cannot marshal losslessly. So we have to keep around the original bytes.
// This is used in computeAuthData, which will first attempt to use
// the original bytes of a protected header, and fall back on marshaling the
// header struct only if those bytes are not available.
signature.original = &rawSignatureInfo{
Protected: parsed.Protected,
Header: parsed.Header,
Signature: parsed.Signature,
}
signature.Header = signature.mergedHeaders().sanitized()
obj.Signatures = append(obj.Signatures, signature)
}
for i, sig := range parsed.Signatures {
if sig.Protected != nil && len(sig.Protected.bytes()) > 0 {
obj.Signatures[i].protected = &rawHeader{}
err := json.Unmarshal(sig.Protected.bytes(), obj.Signatures[i].protected)
if err != nil {
return nil, err
}
}
// Check that there is not a nonce in the unprotected header
if sig.Header != nil && sig.Header.Nonce != "" {
return nil, ErrUnprotectedNonce
}
obj.Signatures[i].Signature = sig.Signature.bytes()
// Copy value of sig
original := sig
obj.Signatures[i].header = sig.Header
obj.Signatures[i].original = &original
obj.Signatures[i].Header = obj.Signatures[i].mergedHeaders().sanitized()
}
return obj, nil
}
// parseSignedCompact parses a message in compact format.
func parseSignedCompact(input string) (*JsonWebSignature, error) {
parts := strings.Split(input, ".")
if len(parts) != 3 {
return nil, fmt.Errorf("square/go-jose: compact JWS format must have three parts")
}
rawProtected, err := base64URLDecode(parts[0])
if err != nil {
return nil, err
}
payload, err := base64URLDecode(parts[1])
if err != nil {
return nil, err
}
signature, err := base64URLDecode(parts[2])
if err != nil {
return nil, err
}
raw := &rawJsonWebSignature{
Payload: newBuffer(payload),
Protected: newBuffer(rawProtected),
Signature: newBuffer(signature),
}
return raw.sanitized()
}
// CompactSerialize serializes an object using the compact serialization format.
func (obj JsonWebSignature) CompactSerialize() (string, error) {
if len(obj.Signatures) != 1 || obj.Signatures[0].header != nil || obj.Signatures[0].protected == nil {
return "", ErrNotSupported
}
serializedProtected := mustSerializeJSON(obj.Signatures[0].protected)
return fmt.Sprintf(
"%s.%s.%s",
base64URLEncode(serializedProtected),
base64URLEncode(obj.payload),
base64URLEncode(obj.Signatures[0].Signature)), nil
}
// FullSerialize serializes an object using the full JSON serialization format.
func (obj JsonWebSignature) FullSerialize() string {
raw := rawJsonWebSignature{
Payload: newBuffer(obj.payload),
}
if len(obj.Signatures) == 1 {
if obj.Signatures[0].protected != nil {
serializedProtected := mustSerializeJSON(obj.Signatures[0].protected)
raw.Protected = newBuffer(serializedProtected)
}
raw.Header = obj.Signatures[0].header
raw.Signature = newBuffer(obj.Signatures[0].Signature)
} else {
raw.Signatures = make([]rawSignatureInfo, len(obj.Signatures))
for i, signature := range obj.Signatures {
raw.Signatures[i] = rawSignatureInfo{
Header: signature.header,
Signature: newBuffer(signature.Signature),
}
if signature.protected != nil {
raw.Signatures[i].Protected = newBuffer(mustSerializeJSON(signature.protected))
}
}
}
return string(mustSerializeJSON(raw))
}

View File

@ -0,0 +1,302 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"fmt"
"strings"
"testing"
)
func TestCompactParseJWS(t *testing.T) {
// Should parse
msg := "eyJhbGciOiJYWVoifQ.cGF5bG9hZA.c2lnbmF0dXJl"
_, err := ParseSigned(msg)
if err != nil {
t.Error("Unable to parse valid message:", err)
}
// Messages that should fail to parse
failures := []string{
// Not enough parts
"eyJhbGciOiJYWVoifQ.cGF5bG9hZA",
// Invalid signature
"eyJhbGciOiJYWVoifQ.cGF5bG9hZA.////",
// Invalid payload
"eyJhbGciOiJYWVoifQ.////.c2lnbmF0dXJl",
// Invalid header
"////.eyJhbGciOiJYWVoifQ.c2lnbmF0dXJl",
// Invalid header
"cGF5bG9hZA.cGF5bG9hZA.c2lnbmF0dXJl",
}
for i := range failures {
_, err = ParseSigned(failures[i])
if err == nil {
t.Error("Able to parse invalid message")
}
}
}
func TestFullParseJWS(t *testing.T) {
// Messages that should succeed to parse
successes := []string{
"{\"payload\":\"CUJD\",\"signatures\":[{\"protected\":\"e30\",\"header\":{\"kid\":\"XYZ\"},\"signature\":\"CUJD\"},{\"protected\":\"e30\",\"signature\":\"CUJD\"}]}",
}
for i := range successes {
_, err := ParseSigned(successes[i])
if err != nil {
t.Error("Unble to parse valid message", err, successes[i])
}
}
// Messages that should fail to parse
failures := []string{
// Empty
"{}",
// Invalid JSON
"{XX",
// Invalid protected header
"{\"payload\":\"CUJD\",\"signatures\":[{\"protected\":\"CUJD\",\"header\":{\"kid\":\"XYZ\"},\"signature\":\"CUJD\"}]}",
// Invalid protected header
"{\"payload\":\"CUJD\",\"protected\":\"CUJD\",\"header\":{\"kid\":\"XYZ\"},\"signature\":\"CUJD\"}",
// Invalid protected header
"{\"payload\":\"CUJD\",\"signatures\":[{\"protected\":\"###\",\"header\":{\"kid\":\"XYZ\"},\"signature\":\"CUJD\"}]}",
// Invalid payload
"{\"payload\":\"###\",\"signatures\":[{\"protected\":\"CUJD\",\"header\":{\"kid\":\"XYZ\"},\"signature\":\"CUJD\"}]}",
// Invalid payload
"{\"payload\":\"CUJD\",\"signatures\":[{\"protected\":\"e30\",\"header\":{\"kid\":\"XYZ\"},\"signature\":\"###\"}]}",
}
for i := range failures {
_, err := ParseSigned(failures[i])
if err == nil {
t.Error("Able to parse invalid message", err, failures[i])
}
}
}
func TestRejectUnprotectedJWSNonce(t *testing.T) {
// No need to test compact, since that's always protected
// Flattened JSON
input := `{
"header": { "nonce": "should-cause-an-error" },
"payload": "does-not-matter",
"signature": "does-not-matter"
}`
_, err := ParseSigned(input)
if err == nil {
t.Error("JWS with an unprotected nonce parsed as valid.")
} else if err != ErrUnprotectedNonce {
t.Errorf("Improper error for unprotected nonce: %v", err)
}
// Full JSON
input = `{
"payload": "does-not-matter",
"signatures": [{
"header": { "nonce": "should-cause-an-error" },
"signature": "does-not-matter"
}]
}`
_, err = ParseSigned(input)
if err == nil {
t.Error("JWS with an unprotected nonce parsed as valid.")
} else if err != ErrUnprotectedNonce {
t.Errorf("Improper error for unprotected nonce: %v", err)
}
}
func TestVerifyFlattenedWithIncludedUnprotectedKey(t *testing.T) {
input := `{
"header": {
"alg": "RS256",
"jwk": {
"e": "AQAB",
"kty": "RSA",
"n": "tSwgy3ORGvc7YJI9B2qqkelZRUC6F1S5NwXFvM4w5-M0TsxbFsH5UH6adigV0jzsDJ5imAechcSoOhAh9POceCbPN1sTNwLpNbOLiQQ7RD5mY_pSUHWXNmS9R4NZ3t2fQAzPeW7jOfF0LKuJRGkekx6tXP1uSnNibgpJULNc4208dgBaCHo3mvaE2HV2GmVl1yxwWX5QZZkGQGjNDZYnjFfa2DKVvFs0QbAk21ROm594kAxlRlMMrvqlf24Eq4ERO0ptzpZgm_3j_e4hGRD39gJS7kAzK-j2cacFQ5Qi2Y6wZI2p-FCq_wiYsfEAIkATPBiLKl_6d_Jfcvs_impcXQ"
}
},
"payload": "Zm9vCg",
"signature": "hRt2eYqBd_MyMRNIh8PEIACoFtmBi7BHTLBaAhpSU6zyDAFdEBaX7us4VB9Vo1afOL03Q8iuoRA0AT4akdV_mQTAQ_jhTcVOAeXPr0tB8b8Q11UPQ0tXJYmU4spAW2SapJIvO50ntUaqU05kZd0qw8-noH1Lja-aNnU-tQII4iYVvlTiRJ5g8_CADsvJqOk6FcHuo2mG643TRnhkAxUtazvHyIHeXMxydMMSrpwUwzMtln4ZJYBNx4QGEq6OhpAD_VSp-w8Lq5HOwGQoNs0bPxH1SGrArt67LFQBfjlVr94E1sn26p4vigXm83nJdNhWAMHHE9iV67xN-r29LT-FjA"
}`
jws, err := ParseSigned(input)
if err != nil {
t.Error("Unable to parse valid message.")
}
if len(jws.Signatures) != 1 {
t.Error("Too many or too few signatures.")
}
sig := jws.Signatures[0]
if sig.Header.JsonWebKey == nil {
t.Error("No JWK in signature header.")
}
payload, err := jws.Verify(sig.Header.JsonWebKey)
if err != nil {
t.Error(fmt.Sprintf("Signature did not validate: %v", err))
}
if string(payload) != "foo\n" {
t.Error(fmt.Sprintf("Payload was incorrect: '%s' should have been 'foo\\n'", string(payload)))
}
}
func TestVerifyFlattenedWithPrivateProtected(t *testing.T) {
// The protected field contains a Private Header Parameter name, per
// https://tools.ietf.org/html/draft-ietf-jose-json-web-signature-41#section-4
// Base64-decoded, it's '{"nonce":"8HIepUNFZUa-exKTrXVf4g"}'
input := `{"header":{"alg":"RS256","jwk":{"kty":"RSA","n":"7ixeydcbxxppzxrBphrW1atUiEZqTpiHDpI-79olav5XxAgWolHmVsJyxzoZXRxmtED8PF9-EICZWBGdSAL9ZTD0hLUCIsPcpdgT_LqNW3Sh2b2caPL2hbMF7vsXvnCGg9varpnHWuYTyRrCLUF9vM7ES-V3VCYTa7LcCSRm56Gg9r19qar43Z9kIKBBxpgt723v2cC4bmLmoAX2s217ou3uCpCXGLOeV_BesG4--Nl3pso1VhCfO85wEWjmW6lbv7Kg4d7Jdkv5DjDZfJ086fkEAYZVYGRpIgAvJBH3d3yKDCrSByUEud1bWuFjQBmMaeYOrVDXO_mbYg5PwUDMhw","e":"AQAB"}},"protected":"eyJub25jZSI6IjhISWVwVU5GWlVhLWV4S1RyWFZmNGcifQ","payload":"eyJjb250YWN0IjpbIm1haWx0bzpmb29AYmFyLmNvbSJdfQ","signature":"AyvVGMgXsQ1zTdXrZxE_gyO63pQgotL1KbI7gv6Wi8I7NRy0iAOkDAkWcTQT9pcCYApJ04lXfEDZfP5i0XgcFUm_6spxi5mFBZU-NemKcvK9dUiAbXvb4hB3GnaZtZiuVnMQUb_ku4DOaFFKbteA6gOYCnED_x7v0kAPHIYrQnvIa-KZ6pTajbV9348zgh9TL7NgGIIsTcMHd-Jatr4z1LQ0ubGa8tS300hoDhVzfoDQaEetYjCo1drR1RmdEN1SIzXdHOHfubjA3ZZRbrF_AJnNKpRRoIwzu1VayOhRmdy1qVSQZq_tENF4VrQFycEL7DhG7JLoXC4T2p1urwMlsw"}`
jws, err := ParseSigned(input)
if err != nil {
t.Error("Unable to parse valid message.")
}
if len(jws.Signatures) != 1 {
t.Error("Too many or too few signatures.")
}
sig := jws.Signatures[0]
if sig.Header.JsonWebKey == nil {
t.Error("No JWK in signature header.")
}
payload, err := jws.Verify(sig.Header.JsonWebKey)
if err != nil {
t.Error(fmt.Sprintf("Signature did not validate: %v", err))
}
expected := "{\"contact\":[\"mailto:foo@bar.com\"]}"
if string(payload) != expected {
t.Error(fmt.Sprintf("Payload was incorrect: '%s' should have been '%s'", string(payload), expected))
}
}
// Test vectors generated with nimbus-jose-jwt
func TestSampleNimbusJWSMessagesRSA(t *testing.T) {
rsaPublicKey, err := LoadPublicKey(fromBase64Bytes(`
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA3aLSGwbeX0ZA2Ha+EvELaIFGzO
91+Q15JQc/tdGdCgGW3XAbrh7ZUhDh1XKzbs+UOQxqn3Eq4YOx18IG0WsJSuCaHQIxnDlZ
t/GP8WLwjMC0izlJLm2SyfM/EEoNpmTC3w6MQ2dHK7SZ9Zoq+sKijQd+V7CYdr8zHMpDrd
NKoEcR0HjmvzzdMoUChhkGH5TaNbZyollULTggepaYUKS8QphqdSDMWiSetKG+g6V87lv6
CVYyK1FF6g7Esp5OOj5pNn3/bmF+7V+b7TvK91NCIlURCjE9toRgNoIP4TDnWRn/vvfZ3G
zNrtWmlizqz3r5KdvIs71ahWgMUSD4wfazrwIDAQAB`))
if err != nil {
panic(err)
}
rsaSampleMessages := []string{
"eyJhbGciOiJSUzI1NiJ9.TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQ.YHX849fvekz6wJGeyqnQhFqyHFcUXNJKj3o2w3ddR46YLlsCopUJrlifRU_ZuTWzpYxt5oC--T2eoqMhlCvltSWrE5_1_EumqiMfAYsZULx9E6Jns7q3w7mttonYFSIh7aR3-yg2HMMfTCgoAY1y_AZ4VjXwHDcZ5gu1oZDYgvZF4uXtCmwT6e5YtR1m8abiWPF8BgoTG_BD3KV6ClLj_QQiNFdfdxAMDw7vKVOKG1T7BFtz6cDs2Q3ILS4To5E2IjcVSSYS8mi77EitCrWmrqbK_G3WCdKeUFGnMnyuKXaCDy_7FLpAZ6Z5RomRr5iskXeJZdZqIKcJV8zl4fpsPA",
"eyJhbGciOiJSUzM4NCJ9.TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQ.meyfoOTjAAjXHFYiNlU7EEnsYtbeUYeEglK6BL_cxISEr2YAGLr1Gwnn2HnucTnH6YilyRio7ZC1ohy_ZojzmaljPHqpr8kn1iqNFu9nFE2M16ZPgJi38-PGzppcDNliyzOQO-c7L-eA-v8Gfww5uyRaOJdiWg-hUJmeGBIngPIeLtSVmhJtz8oTeqeNdUOqQv7f7VRCuvagLhW1PcEM91VUS-gS0WEUXoXWZ2lp91No0v1O24izgX3__FKiX_16XhrOfAgJ82F61vjbTIQYwhexHPZyYTlXYt_scNRzFGhSKeGFin4zVdFLOXWJqKWdUd5IrDP5Nya3FSoWbWDXAg",
"eyJhbGciOiJSUzUxMiJ9.TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQ.rQPz0PDh8KyE2AX6JorgI0MLwv-qi1tcWlz6tuZuWQG1hdrlzq5tR1tQg1evYNc_SDDX87DWTSKXT7JEqhKoFixLfZa13IJrOc7FB8r5ZLx7OwOBC4F--OWrvxMA9Y3MTJjPN3FemQePUo-na2vNUZv-YgkcbuOgbO3hTxwQ7j1JGuqy-YutXOFnccdXvntp3t8zYZ4Mg1It_IyL9pzgGqHIEmMV1pCFGHsDa-wStB4ffmdhrADdYZc0q_SvxUdobyC_XzZCz9ENzGIhgwYxyyrqg7kjqUGoKmCLmoSlUFW7goTk9IC5SXdUyLPuESxOWNfHoRClGav230GYjPFQFA",
"eyJhbGciOiJQUzI1NiJ9.TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQ.UTtxjsv_6x4CdlAmZfAW6Lun3byMjJbcwRp_OlPH2W4MZaZar7aql052mIB_ddK45O9VUz2aphYVRvKPZY8WHmvlTUU30bk0z_cDJRYB9eIJVMOiRCYj0oNkz1iEZqsP0YgngxwuUDv4Q4A6aJ0Bo5E_rZo3AnrVHMHUjPp_ZRRSBFs30tQma1qQ0ApK4Gxk0XYCYAcxIv99e78vldVRaGzjEZmQeAVZx4tGcqZP20vG1L84nlhSGnOuZ0FhR8UjRFLXuob6M7EqtMRoqPgRYw47EI3fYBdeSivAg98E5S8R7R1NJc7ef-l03RvfUSY0S3_zBq_4PlHK6A-2kHb__w",
"eyJhbGciOiJSUzM4NCJ9.TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQ.meyfoOTjAAjXHFYiNlU7EEnsYtbeUYeEglK6BL_cxISEr2YAGLr1Gwnn2HnucTnH6YilyRio7ZC1ohy_ZojzmaljPHqpr8kn1iqNFu9nFE2M16ZPgJi38-PGzppcDNliyzOQO-c7L-eA-v8Gfww5uyRaOJdiWg-hUJmeGBIngPIeLtSVmhJtz8oTeqeNdUOqQv7f7VRCuvagLhW1PcEM91VUS-gS0WEUXoXWZ2lp91No0v1O24izgX3__FKiX_16XhrOfAgJ82F61vjbTIQYwhexHPZyYTlXYt_scNRzFGhSKeGFin4zVdFLOXWJqKWdUd5IrDP5Nya3FSoWbWDXAg",
"eyJhbGciOiJSUzUxMiJ9.TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQ.rQPz0PDh8KyE2AX6JorgI0MLwv-qi1tcWlz6tuZuWQG1hdrlzq5tR1tQg1evYNc_SDDX87DWTSKXT7JEqhKoFixLfZa13IJrOc7FB8r5ZLx7OwOBC4F--OWrvxMA9Y3MTJjPN3FemQePUo-na2vNUZv-YgkcbuOgbO3hTxwQ7j1JGuqy-YutXOFnccdXvntp3t8zYZ4Mg1It_IyL9pzgGqHIEmMV1pCFGHsDa-wStB4ffmdhrADdYZc0q_SvxUdobyC_XzZCz9ENzGIhgwYxyyrqg7kjqUGoKmCLmoSlUFW7goTk9IC5SXdUyLPuESxOWNfHoRClGav230GYjPFQFA",
}
for _, msg := range rsaSampleMessages {
obj, err := ParseSigned(msg)
if err != nil {
t.Error("unable to parse message", msg, err)
continue
}
payload, err := obj.Verify(rsaPublicKey)
if err != nil {
t.Error("unable to verify message", msg, err)
continue
}
if string(payload) != "Lorem ipsum dolor sit amet" {
t.Error("payload is not what we expected for msg", msg)
}
}
}
// Test vectors generated with nimbus-jose-jwt
func TestSampleNimbusJWSMessagesEC(t *testing.T) {
ecPublicKeyP256, err := LoadPublicKey(fromBase64Bytes("MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEIg62jq6FyL1otEj9Up7S35BUrwGF9TVrAzrrY1rHUKZqYIGEg67u/imjgadVcr7y9Q32I0gB8W8FHqbqt696rA=="))
if err != nil {
panic(err)
}
ecPublicKeyP384, err := LoadPublicKey(fromBase64Bytes("MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEPXsVlqCtN2oTY+F+hFZm3M0ldYpb7IeeJM5wYmT0k1RaqzBFDhDMNnYK5Q5x+OyssZrAtHgYDFw02AVJhhng/eHRp7mqmL/vI3wbxJtrLKYldIbBA+9fYBQcKeibjlu5"))
if err != nil {
panic(err)
}
ecPublicKeyP521, err := LoadPublicKey(fromBase64Bytes("MIGbMBAGByqGSM49AgEGBSuBBAAjA4GGAAQAa2w3MMJ5FWD6tSf68G+Wy5jIhWXOD3IA7pE5IC/myQzo1lWcD8KS57SM6nm4POtPcxyLmDhL7FLuh8DKoIZyvtAAdK8+tOQP7XXRlT2bkvzIuazp05It3TAPu00YzTIpKfDlc19Y1lvf7etrbFqhShD92B+hHmhT4ddrdbPCBDW8hvU="))
if err != nil {
panic(err)
}
ecPublicKeys := []interface{}{ecPublicKeyP256, ecPublicKeyP384, ecPublicKeyP521}
ecSampleMessages := []string{
"eyJhbGciOiJFUzI1NiJ9.TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQ.MEWJVlvGRQyzMEGOYm4rwuiwxrX-6LjnlbaRDAuhwmnBm2Gtn7pRpGXRTMFZUXsSGDz2L1p-Hz1qn8j9bFIBtQ",
"eyJhbGciOiJFUzM4NCJ9.TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQ.nbdjPnJPYQtVNNdBIx8-KbFKplTxrz-hnW5UNhYUY7SBkwHK4NZnqc2Lv4DXoA0aWHq9eiypgOh1kmyPWGEmqKAHUx0xdIEkBoHk3ZsbmhOQuq2jL_wcMUG6nTWNhLrB",
"eyJhbGciOiJFUzUxMiJ9.TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQ.AeYNFC1rwIgQv-5fwd8iRyYzvTaSCYTEICepgu9gRId-IW99kbSVY7yH0MvrQnqI-a0L8zwKWDR35fW5dukPAYRkADp3Y1lzqdShFcEFziUVGo46vqbiSajmKFrjBktJcCsfjKSaLHwxErF-T10YYPCQFHWb2nXJOOI3CZfACYqgO84g",
}
for i, msg := range ecSampleMessages {
obj, err := ParseSigned(msg)
if err != nil {
t.Error("unable to parse message", msg, err)
continue
}
payload, err := obj.Verify(ecPublicKeys[i])
if err != nil {
t.Error("unable to verify message", msg, err)
continue
}
if string(payload) != "Lorem ipsum dolor sit amet" {
t.Error("payload is not what we expected for msg", msg)
}
}
}
// Test vectors generated with nimbus-jose-jwt
func TestSampleNimbusJWSMessagesHMAC(t *testing.T) {
hmacTestKey := fromHexBytes("DF1FA4F36FFA7FC42C81D4B3C033928D")
hmacSampleMessages := []string{
"eyJhbGciOiJIUzI1NiJ9.TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQ.W5tc_EUhxexcvLYEEOckyyvdb__M5DQIVpg6Nmk1XGM",
"eyJhbGciOiJIUzM4NCJ9.TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQ.sBu44lXOJa4Nd10oqOdYH2uz3lxlZ6o32QSGHaoGdPtYTDG5zvSja6N48CXKqdAh",
"eyJhbGciOiJIUzUxMiJ9.TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQ.M0yR4tmipsORIix-BitIbxEPGaxPchDfj8UNOpKuhDEfnb7URjGvCKn4nOlyQ1z9mG1FKbwnqR1hOVAWSzAU_w",
}
for _, msg := range hmacSampleMessages {
obj, err := ParseSigned(msg)
if err != nil {
t.Error("unable to parse message", msg, err)
continue
}
payload, err := obj.Verify(hmacTestKey)
if err != nil {
t.Error("unable to verify message", msg, err)
continue
}
if string(payload) != "Lorem ipsum dolor sit amet" {
t.Error("payload is not what we expected for msg", msg)
}
}
}
// Test vectors generated with nimbus-jose-jwt
func TestErrorMissingPayloadJWS(t *testing.T) {
_, err := (&rawJsonWebSignature{}).sanitized()
if err == nil {
t.Error("was able to parse message with missing payload")
}
if !strings.Contains(err.Error(), "missing payload") {
t.Errorf("unexpected error message, should contain 'missing payload': %s", err)
}
}

View File

@ -0,0 +1,224 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"crypto/elliptic"
"errors"
"fmt"
)
// KeyAlgorithm represents a key management algorithm.
type KeyAlgorithm string
// SignatureAlgorithm represents a signature (or MAC) algorithm.
type SignatureAlgorithm string
// ContentEncryption represents a content encryption algorithm.
type ContentEncryption string
// CompressionAlgorithm represents an algorithm used for plaintext compression.
type CompressionAlgorithm string
var (
// ErrCryptoFailure represents an error in cryptographic primitive. This
// occurs when, for example, a message had an invalid authentication tag or
// could not be decrypted.
ErrCryptoFailure = errors.New("square/go-jose: error in cryptographic primitive")
// ErrUnsupportedAlgorithm indicates that a selected algorithm is not
// supported. This occurs when trying to instantiate an encrypter for an
// algorithm that is not yet implemented.
ErrUnsupportedAlgorithm = errors.New("square/go-jose: unknown/unsupported algorithm")
// ErrUnsupportedKeyType indicates that the given key type/format is not
// supported. This occurs when trying to instantiate an encrypter and passing
// it a key of an unrecognized type or with unsupported parameters, such as
// an RSA private key with more than two primes.
ErrUnsupportedKeyType = errors.New("square/go-jose: unsupported key type/format")
// ErrNotSupported serialization of object is not supported. This occurs when
// trying to compact-serialize an object which can't be represented in
// compact form.
ErrNotSupported = errors.New("square/go-jose: compact serialization not supported for object")
// ErrUnprotectedNonce indicates that while parsing a JWS or JWE object, a
// nonce header parameter was included in an unprotected header object.
ErrUnprotectedNonce = errors.New("square/go-jose: Nonce parameter included in unprotected header")
)
// Key management algorithms
const (
RSA1_5 = KeyAlgorithm("RSA1_5") // RSA-PKCS1v1.5
RSA_OAEP = KeyAlgorithm("RSA-OAEP") // RSA-OAEP-SHA1
RSA_OAEP_256 = KeyAlgorithm("RSA-OAEP-256") // RSA-OAEP-SHA256
A128KW = KeyAlgorithm("A128KW") // AES key wrap (128)
A192KW = KeyAlgorithm("A192KW") // AES key wrap (192)
A256KW = KeyAlgorithm("A256KW") // AES key wrap (256)
DIRECT = KeyAlgorithm("dir") // Direct encryption
ECDH_ES = KeyAlgorithm("ECDH-ES") // ECDH-ES
ECDH_ES_A128KW = KeyAlgorithm("ECDH-ES+A128KW") // ECDH-ES + AES key wrap (128)
ECDH_ES_A192KW = KeyAlgorithm("ECDH-ES+A192KW") // ECDH-ES + AES key wrap (192)
ECDH_ES_A256KW = KeyAlgorithm("ECDH-ES+A256KW") // ECDH-ES + AES key wrap (256)
A128GCMKW = KeyAlgorithm("A128GCMKW") // AES-GCM key wrap (128)
A192GCMKW = KeyAlgorithm("A192GCMKW") // AES-GCM key wrap (192)
A256GCMKW = KeyAlgorithm("A256GCMKW") // AES-GCM key wrap (256)
PBES2_HS256_A128KW = KeyAlgorithm("PBES2-HS256+A128KW") // PBES2 + HMAC-SHA256 + AES key wrap (128)
PBES2_HS384_A192KW = KeyAlgorithm("PBES2-HS384+A192KW") // PBES2 + HMAC-SHA384 + AES key wrap (192)
PBES2_HS512_A256KW = KeyAlgorithm("PBES2-HS512+A256KW") // PBES2 + HMAC-SHA512 + AES key wrap (256)
)
// Signature algorithms
const (
HS256 = SignatureAlgorithm("HS256") // HMAC using SHA-256
HS384 = SignatureAlgorithm("HS384") // HMAC using SHA-384
HS512 = SignatureAlgorithm("HS512") // HMAC using SHA-512
RS256 = SignatureAlgorithm("RS256") // RSASSA-PKCS-v1.5 using SHA-256
RS384 = SignatureAlgorithm("RS384") // RSASSA-PKCS-v1.5 using SHA-384
RS512 = SignatureAlgorithm("RS512") // RSASSA-PKCS-v1.5 using SHA-512
ES256 = SignatureAlgorithm("ES256") // ECDSA using P-256 and SHA-256
ES384 = SignatureAlgorithm("ES384") // ECDSA using P-384 and SHA-384
ES512 = SignatureAlgorithm("ES512") // ECDSA using P-521 and SHA-512
PS256 = SignatureAlgorithm("PS256") // RSASSA-PSS using SHA256 and MGF1-SHA256
PS384 = SignatureAlgorithm("PS384") // RSASSA-PSS using SHA384 and MGF1-SHA384
PS512 = SignatureAlgorithm("PS512") // RSASSA-PSS using SHA512 and MGF1-SHA512
)
// Content encryption algorithms
const (
A128CBC_HS256 = ContentEncryption("A128CBC-HS256") // AES-CBC + HMAC-SHA256 (128)
A192CBC_HS384 = ContentEncryption("A192CBC-HS384") // AES-CBC + HMAC-SHA384 (192)
A256CBC_HS512 = ContentEncryption("A256CBC-HS512") // AES-CBC + HMAC-SHA512 (256)
A128GCM = ContentEncryption("A128GCM") // AES-GCM (128)
A192GCM = ContentEncryption("A192GCM") // AES-GCM (192)
A256GCM = ContentEncryption("A256GCM") // AES-GCM (256)
)
// Compression algorithms
const (
NONE = CompressionAlgorithm("") // No compression
DEFLATE = CompressionAlgorithm("DEF") // DEFLATE (RFC 1951)
)
// rawHeader represents the JOSE header for JWE/JWS objects (used for parsing).
type rawHeader struct {
Alg string `json:"alg,omitempty"`
Enc ContentEncryption `json:"enc,omitempty"`
Zip CompressionAlgorithm `json:"zip,omitempty"`
Crit []string `json:"crit,omitempty"`
Apu *byteBuffer `json:"apu,omitempty"`
Apv *byteBuffer `json:"apv,omitempty"`
Epk *JsonWebKey `json:"epk,omitempty"`
Iv *byteBuffer `json:"iv,omitempty"`
Tag *byteBuffer `json:"tag,omitempty"`
Jwk *JsonWebKey `json:"jwk,omitempty"`
Kid string `json:"kid,omitempty"`
Nonce string `json:"nonce,omitempty"`
}
// JoseHeader represents the read-only JOSE header for JWE/JWS objects.
type JoseHeader struct {
KeyID string
JsonWebKey *JsonWebKey
Algorithm string
Nonce string
}
// sanitized produces a cleaned-up header object from the raw JSON.
func (parsed rawHeader) sanitized() JoseHeader {
return JoseHeader{
KeyID: parsed.Kid,
JsonWebKey: parsed.Jwk,
Algorithm: parsed.Alg,
Nonce: parsed.Nonce,
}
}
// Merge headers from src into dst, giving precedence to headers from l.
func (dst *rawHeader) merge(src *rawHeader) {
if src == nil {
return
}
if dst.Alg == "" {
dst.Alg = src.Alg
}
if dst.Enc == "" {
dst.Enc = src.Enc
}
if dst.Zip == "" {
dst.Zip = src.Zip
}
if dst.Crit == nil {
dst.Crit = src.Crit
}
if dst.Crit == nil {
dst.Crit = src.Crit
}
if dst.Apu == nil {
dst.Apu = src.Apu
}
if dst.Apv == nil {
dst.Apv = src.Apv
}
if dst.Epk == nil {
dst.Epk = src.Epk
}
if dst.Iv == nil {
dst.Iv = src.Iv
}
if dst.Tag == nil {
dst.Tag = src.Tag
}
if dst.Kid == "" {
dst.Kid = src.Kid
}
if dst.Jwk == nil {
dst.Jwk = src.Jwk
}
if dst.Nonce == "" {
dst.Nonce = src.Nonce
}
}
// Get JOSE name of curve
func curveName(crv elliptic.Curve) (string, error) {
switch crv {
case elliptic.P256():
return "P-256", nil
case elliptic.P384():
return "P-384", nil
case elliptic.P521():
return "P-521", nil
default:
return "", fmt.Errorf("square/go-jose: unsupported/unknown elliptic curve")
}
}
// Get size of curve in bytes
func curveSize(crv elliptic.Curve) int {
bits := crv.Params().BitSize
div := bits / 8
mod := bits % 8
if mod == 0 {
return div
}
return div + 1
}

View File

@ -0,0 +1,205 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"crypto/ecdsa"
"crypto/rsa"
"fmt"
)
// NonceSource represents a source of random nonces to go into JWS objects
type NonceSource interface {
Nonce() (string, error)
}
// Signer represents a signer which takes a payload and produces a signed JWS object.
type Signer interface {
Sign(payload []byte) (*JsonWebSignature, error)
SetNonceSource(source NonceSource)
}
// MultiSigner represents a signer which supports multiple recipients.
type MultiSigner interface {
Sign(payload []byte) (*JsonWebSignature, error)
SetNonceSource(source NonceSource)
AddRecipient(alg SignatureAlgorithm, signingKey interface{}) error
}
type payloadSigner interface {
signPayload(payload []byte, alg SignatureAlgorithm) (Signature, error)
}
type payloadVerifier interface {
verifyPayload(payload []byte, signature []byte, alg SignatureAlgorithm) error
}
type genericSigner struct {
recipients []recipientSigInfo
nonceSource NonceSource
}
type recipientSigInfo struct {
sigAlg SignatureAlgorithm
publicKey *JsonWebKey
signer payloadSigner
}
// NewSigner creates an appropriate signer based on the key type
func NewSigner(alg SignatureAlgorithm, signingKey interface{}) (Signer, error) {
// NewMultiSigner never fails (currently)
signer := NewMultiSigner()
err := signer.AddRecipient(alg, signingKey)
if err != nil {
return nil, err
}
return signer, nil
}
// NewMultiSigner creates a signer for multiple recipients
func NewMultiSigner() MultiSigner {
return &genericSigner{
recipients: []recipientSigInfo{},
}
}
// newVerifier creates a verifier based on the key type
func newVerifier(verificationKey interface{}) (payloadVerifier, error) {
switch verificationKey := verificationKey.(type) {
case *rsa.PublicKey:
return &rsaEncrypterVerifier{
publicKey: verificationKey,
}, nil
case *ecdsa.PublicKey:
return &ecEncrypterVerifier{
publicKey: verificationKey,
}, nil
case []byte:
return &symmetricMac{
key: verificationKey,
}, nil
case *JsonWebKey:
return newVerifier(verificationKey.Key)
default:
return nil, ErrUnsupportedKeyType
}
}
func (ctx *genericSigner) AddRecipient(alg SignatureAlgorithm, signingKey interface{}) error {
recipient, err := makeJWSRecipient(alg, signingKey)
if err != nil {
return err
}
ctx.recipients = append(ctx.recipients, recipient)
return nil
}
func makeJWSRecipient(alg SignatureAlgorithm, signingKey interface{}) (recipientSigInfo, error) {
switch signingKey := signingKey.(type) {
case *rsa.PrivateKey:
return newRSASigner(alg, signingKey)
case *ecdsa.PrivateKey:
return newECDSASigner(alg, signingKey)
case []byte:
return newSymmetricSigner(alg, signingKey)
case *JsonWebKey:
recipient, err := makeJWSRecipient(alg, signingKey.Key)
if err != nil {
return recipientSigInfo{}, err
}
recipient.publicKey.KeyID = signingKey.KeyID
return recipient, nil
default:
return recipientSigInfo{}, ErrUnsupportedKeyType
}
}
func (ctx *genericSigner) Sign(payload []byte) (*JsonWebSignature, error) {
obj := &JsonWebSignature{}
obj.payload = payload
obj.Signatures = make([]Signature, len(ctx.recipients))
for i, recipient := range ctx.recipients {
protected := &rawHeader{
Alg: string(recipient.sigAlg),
}
if recipient.publicKey != nil {
protected.Jwk = recipient.publicKey
protected.Kid = recipient.publicKey.KeyID
}
if ctx.nonceSource != nil {
nonce, err := ctx.nonceSource.Nonce()
if err != nil {
return nil, fmt.Errorf("square/go-jose: Error generating nonce: %v", err)
}
protected.Nonce = nonce
}
serializedProtected := mustSerializeJSON(protected)
input := []byte(fmt.Sprintf("%s.%s",
base64URLEncode(serializedProtected),
base64URLEncode(payload)))
signatureInfo, err := recipient.signer.signPayload(input, recipient.sigAlg)
if err != nil {
return nil, err
}
signatureInfo.protected = protected
obj.Signatures[i] = signatureInfo
}
return obj, nil
}
// SetNonceSource provides or updates a nonce pool to the first recipients.
// After this method is called, the signer will consume one nonce per
// signature, returning an error it is unable to get a nonce.
func (ctx *genericSigner) SetNonceSource(source NonceSource) {
ctx.nonceSource = source
}
// Verify validates the signature on the object and returns the payload.
func (obj JsonWebSignature) Verify(verificationKey interface{}) ([]byte, error) {
verifier, err := newVerifier(verificationKey)
if err != nil {
return nil, err
}
for _, signature := range obj.Signatures {
headers := signature.mergedHeaders()
if len(headers.Crit) > 0 {
// Unsupported crit header
continue
}
input := obj.computeAuthData(&signature)
alg := SignatureAlgorithm(headers.Alg)
err := verifier.verifyPayload(input, signature.Signature, alg)
if err == nil {
return obj.payload, nil
}
}
return nil, ErrCryptoFailure
}

View File

@ -0,0 +1,379 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"encoding/json"
"fmt"
"io"
"testing"
)
type staticNonceSource string
func (sns staticNonceSource) Nonce() (string, error) {
return string(sns), nil
}
func RoundtripJWS(sigAlg SignatureAlgorithm, serializer func(*JsonWebSignature) (string, error), corrupter func(*JsonWebSignature), signingKey interface{}, verificationKey interface{}, nonce string) error {
signer, err := NewSigner(sigAlg, signingKey)
if err != nil {
return fmt.Errorf("error on new signer: %s", err)
}
if nonce != "" {
signer.SetNonceSource(staticNonceSource(nonce))
}
input := []byte("Lorem ipsum dolor sit amet")
obj, err := signer.Sign(input)
if err != nil {
return fmt.Errorf("error on sign: %s", err)
}
msg, err := serializer(obj)
if err != nil {
return fmt.Errorf("error on serialize: %s", err)
}
obj, err = ParseSigned(msg)
if err != nil {
return fmt.Errorf("error on parse: %s", err)
}
// (Maybe) mangle the object
corrupter(obj)
output, err := obj.Verify(verificationKey)
if err != nil {
return fmt.Errorf("error on verify: %s", err)
}
// Check that verify works with embedded keys (if present)
for i, sig := range obj.Signatures {
if sig.Header.JsonWebKey != nil {
_, err = obj.Verify(sig.Header.JsonWebKey)
if err != nil {
return fmt.Errorf("error on verify with embedded key %d: %s", i, err)
}
}
// Check that the nonce correctly round-tripped (if present)
if sig.Header.Nonce != nonce {
return fmt.Errorf("Incorrect nonce returned: [%s]", sig.Header.Nonce)
}
}
if bytes.Compare(output, input) != 0 {
return fmt.Errorf("input/output do not match, got '%s', expected '%s'", output, input)
}
return nil
}
func TestRoundtripsJWS(t *testing.T) {
// Test matrix
sigAlgs := []SignatureAlgorithm{RS256, RS384, RS512, PS256, PS384, PS512, HS256, HS384, HS512, ES256, ES384, ES512}
serializers := []func(*JsonWebSignature) (string, error){
func(obj *JsonWebSignature) (string, error) { return obj.CompactSerialize() },
func(obj *JsonWebSignature) (string, error) { return obj.FullSerialize(), nil },
}
corrupter := func(obj *JsonWebSignature) {}
for _, alg := range sigAlgs {
signingKey, verificationKey := GenerateSigningTestKey(alg)
for i, serializer := range serializers {
err := RoundtripJWS(alg, serializer, corrupter, signingKey, verificationKey, "test_nonce")
if err != nil {
t.Error(err, alg, i)
}
}
}
}
func TestRoundtripsJWSCorruptSignature(t *testing.T) {
// Test matrix
sigAlgs := []SignatureAlgorithm{RS256, RS384, RS512, PS256, PS384, PS512, HS256, HS384, HS512, ES256, ES384, ES512}
serializers := []func(*JsonWebSignature) (string, error){
func(obj *JsonWebSignature) (string, error) { return obj.CompactSerialize() },
func(obj *JsonWebSignature) (string, error) { return obj.FullSerialize(), nil },
}
corrupters := []func(*JsonWebSignature){
func(obj *JsonWebSignature) {
// Changes bytes in signature
obj.Signatures[0].Signature[10]++
},
func(obj *JsonWebSignature) {
// Set totally invalid signature
obj.Signatures[0].Signature = []byte("###")
},
}
// Test all different configurations
for _, alg := range sigAlgs {
signingKey, verificationKey := GenerateSigningTestKey(alg)
for i, serializer := range serializers {
for j, corrupter := range corrupters {
err := RoundtripJWS(alg, serializer, corrupter, signingKey, verificationKey, "test_nonce")
if err == nil {
t.Error("failed to detect corrupt signature", err, alg, i, j)
}
}
}
}
}
func TestSignerWithBrokenRand(t *testing.T) {
sigAlgs := []SignatureAlgorithm{RS256, RS384, RS512, PS256, PS384, PS512}
serializer := func(obj *JsonWebSignature) (string, error) { return obj.CompactSerialize() }
corrupter := func(obj *JsonWebSignature) {}
// Break rand reader
readers := []func() io.Reader{
// Totally broken
func() io.Reader { return bytes.NewReader([]byte{}) },
// Not enough bytes
func() io.Reader { return io.LimitReader(rand.Reader, 20) },
}
defer resetRandReader()
for _, alg := range sigAlgs {
signingKey, verificationKey := GenerateSigningTestKey(alg)
for i, getReader := range readers {
randReader = getReader()
err := RoundtripJWS(alg, serializer, corrupter, signingKey, verificationKey, "test_nonce")
if err == nil {
t.Error("signer should fail if rand is broken", alg, i)
}
}
}
}
func TestJWSInvalidKey(t *testing.T) {
signingKey0, verificationKey0 := GenerateSigningTestKey(RS256)
_, verificationKey1 := GenerateSigningTestKey(ES256)
signer, err := NewSigner(RS256, signingKey0)
if err != nil {
panic(err)
}
input := []byte("Lorem ipsum dolor sit amet")
obj, err := signer.Sign(input)
if err != nil {
panic(err)
}
// Must work with correct key
_, err = obj.Verify(verificationKey0)
if err != nil {
t.Error("error on verify", err)
}
// Must not work with incorrect key
_, err = obj.Verify(verificationKey1)
if err == nil {
t.Error("verification should fail with incorrect key")
}
// Must not work with invalid key
_, err = obj.Verify("")
if err == nil {
t.Error("verification should fail with incorrect key")
}
}
func TestMultiRecipientJWS(t *testing.T) {
signer := NewMultiSigner()
sharedKey := []byte{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
}
signer.AddRecipient(RS256, rsaTestKey)
signer.AddRecipient(HS384, sharedKey)
input := []byte("Lorem ipsum dolor sit amet")
obj, err := signer.Sign(input)
if err != nil {
t.Error("error on sign: ", err)
return
}
_, err = obj.CompactSerialize()
if err == nil {
t.Error("message with multiple recipient was compact serialized")
}
msg := obj.FullSerialize()
obj, err = ParseSigned(msg)
if err != nil {
t.Error("error on parse: ", err)
return
}
output, err := obj.Verify(&rsaTestKey.PublicKey)
if err != nil {
t.Error("error on verify: ", err)
return
}
if bytes.Compare(output, input) != 0 {
t.Error("input/output do not match", output, input)
return
}
output, err = obj.Verify(sharedKey)
if err != nil {
t.Error("error on verify: ", err)
return
}
if bytes.Compare(output, input) != 0 {
t.Error("input/output do not match", output, input)
return
}
}
func GenerateSigningTestKey(sigAlg SignatureAlgorithm) (sig, ver interface{}) {
switch sigAlg {
case RS256, RS384, RS512, PS256, PS384, PS512:
sig = rsaTestKey
ver = &rsaTestKey.PublicKey
case HS256, HS384, HS512:
sig, _, _ = randomKeyGenerator{size: 16}.genKey()
ver = sig
case ES256:
key, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
sig = key
ver = &key.PublicKey
case ES384:
key, _ := ecdsa.GenerateKey(elliptic.P384(), rand.Reader)
sig = key
ver = &key.PublicKey
case ES512:
key, _ := ecdsa.GenerateKey(elliptic.P521(), rand.Reader)
sig = key
ver = &key.PublicKey
default:
panic("Must update test case")
}
return
}
func TestInvalidSignerAlg(t *testing.T) {
_, err := NewSigner("XYZ", nil)
if err == nil {
t.Error("should not accept invalid algorithm")
}
_, err = NewSigner("XYZ", []byte{})
if err == nil {
t.Error("should not accept invalid algorithm")
}
}
func TestInvalidJWS(t *testing.T) {
signer, err := NewSigner(PS256, rsaTestKey)
if err != nil {
panic(err)
}
obj, err := signer.Sign([]byte("Lorem ipsum dolor sit amet"))
obj.Signatures[0].header = &rawHeader{
Crit: []string{"TEST"},
}
_, err = obj.Verify(&rsaTestKey.PublicKey)
if err == nil {
t.Error("should not verify message with unknown crit header")
}
// Try without alg header
obj.Signatures[0].protected = &rawHeader{}
obj.Signatures[0].header = &rawHeader{}
_, err = obj.Verify(&rsaTestKey.PublicKey)
if err == nil {
t.Error("should not verify message with missing headers")
}
}
func TestSignerKid(t *testing.T) {
kid := "DEADBEEF"
payload := []byte("Lorem ipsum dolor sit amet")
key, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
t.Error("problem generating test signing key", err)
}
basejwk := JsonWebKey{Key: key}
jsonbar, err := basejwk.MarshalJSON()
if err != nil {
t.Error("problem marshalling base JWK", err)
}
var jsonmsi map[string]interface{}
err = json.Unmarshal(jsonbar, &jsonmsi)
if err != nil {
t.Error("problem unmarshalling base JWK", err)
}
jsonmsi["kid"] = kid
jsonbar2, err := json.Marshal(jsonmsi)
if err != nil {
t.Error("problem marshalling kided JWK", err)
}
var jwk JsonWebKey
err = jwk.UnmarshalJSON(jsonbar2)
if err != nil {
t.Error("problem unmarshalling kided JWK", err)
}
signer, err := NewSigner(ES256, &jwk)
if err != nil {
t.Error("problem creating signer", err)
}
signed, err := signer.Sign(payload)
serialized := signed.FullSerialize()
parsed, err := ParseSigned(serialized)
if err != nil {
t.Error("problem parsing signed object", err)
}
if parsed.Signatures[0].Header.KeyID != kid {
t.Error("KeyID did not survive trip")
}
}

View File

@ -0,0 +1,348 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/rand"
"crypto/sha256"
"crypto/sha512"
"crypto/subtle"
"errors"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/square/go-jose/cipher"
"hash"
"io"
)
// Random reader (stubbed out in tests)
var randReader = rand.Reader
// Dummy key cipher for shared symmetric key mode
type symmetricKeyCipher struct {
key []byte // Pre-shared content-encryption key
}
// Signer/verifier for MAC modes
type symmetricMac struct {
key []byte
}
// Input/output from an AEAD operation
type aeadParts struct {
iv, ciphertext, tag []byte
}
// A content cipher based on an AEAD construction
type aeadContentCipher struct {
keyBytes int
authtagBytes int
getAead func(key []byte) (cipher.AEAD, error)
}
// Random key generator
type randomKeyGenerator struct {
size int
}
// Static key generator
type staticKeyGenerator struct {
key []byte
}
// Create a new content cipher based on AES-GCM
func newAESGCM(keySize int) contentCipher {
return &aeadContentCipher{
keyBytes: keySize,
authtagBytes: 16,
getAead: func(key []byte) (cipher.AEAD, error) {
aes, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
return cipher.NewGCM(aes)
},
}
}
// Create a new content cipher based on AES-CBC+HMAC
func newAESCBC(keySize int) contentCipher {
return &aeadContentCipher{
keyBytes: keySize * 2,
authtagBytes: 16,
getAead: func(key []byte) (cipher.AEAD, error) {
return josecipher.NewCBCHMAC(key, aes.NewCipher)
},
}
}
// Get an AEAD cipher object for the given content encryption algorithm
func getContentCipher(alg ContentEncryption) contentCipher {
switch alg {
case A128GCM:
return newAESGCM(16)
case A192GCM:
return newAESGCM(24)
case A256GCM:
return newAESGCM(32)
case A128CBC_HS256:
return newAESCBC(16)
case A192CBC_HS384:
return newAESCBC(24)
case A256CBC_HS512:
return newAESCBC(32)
default:
return nil
}
}
// newSymmetricRecipient creates a JWE encrypter based on AES-GCM key wrap.
func newSymmetricRecipient(keyAlg KeyAlgorithm, key []byte) (recipientKeyInfo, error) {
switch keyAlg {
case DIRECT, A128GCMKW, A192GCMKW, A256GCMKW, A128KW, A192KW, A256KW:
default:
return recipientKeyInfo{}, ErrUnsupportedAlgorithm
}
return recipientKeyInfo{
keyAlg: keyAlg,
keyEncrypter: &symmetricKeyCipher{
key: key,
},
}, nil
}
// newSymmetricSigner creates a recipientSigInfo based on the given key.
func newSymmetricSigner(sigAlg SignatureAlgorithm, key []byte) (recipientSigInfo, error) {
// Verify that key management algorithm is supported by this encrypter
switch sigAlg {
case HS256, HS384, HS512:
default:
return recipientSigInfo{}, ErrUnsupportedAlgorithm
}
return recipientSigInfo{
sigAlg: sigAlg,
signer: &symmetricMac{
key: key,
},
}, nil
}
// Generate a random key for the given content cipher
func (ctx randomKeyGenerator) genKey() ([]byte, rawHeader, error) {
key := make([]byte, ctx.size)
_, err := io.ReadFull(randReader, key)
if err != nil {
return nil, rawHeader{}, err
}
return key, rawHeader{}, nil
}
// Key size for random generator
func (ctx randomKeyGenerator) keySize() int {
return ctx.size
}
// Generate a static key (for direct mode)
func (ctx staticKeyGenerator) genKey() ([]byte, rawHeader, error) {
cek := make([]byte, len(ctx.key))
copy(cek, ctx.key)
return cek, rawHeader{}, nil
}
// Key size for static generator
func (ctx staticKeyGenerator) keySize() int {
return len(ctx.key)
}
// Get key size for this cipher
func (ctx aeadContentCipher) keySize() int {
return ctx.keyBytes
}
// Encrypt some data
func (ctx aeadContentCipher) encrypt(key, aad, pt []byte) (*aeadParts, error) {
// Get a new AEAD instance
aead, err := ctx.getAead(key)
if err != nil {
return nil, err
}
// Initialize a new nonce
iv := make([]byte, aead.NonceSize())
_, err = io.ReadFull(randReader, iv)
if err != nil {
return nil, err
}
ciphertextAndTag := aead.Seal(nil, iv, pt, aad)
offset := len(ciphertextAndTag) - ctx.authtagBytes
return &aeadParts{
iv: iv,
ciphertext: ciphertextAndTag[:offset],
tag: ciphertextAndTag[offset:],
}, nil
}
// Decrypt some data
func (ctx aeadContentCipher) decrypt(key, aad []byte, parts *aeadParts) ([]byte, error) {
aead, err := ctx.getAead(key)
if err != nil {
return nil, err
}
return aead.Open(nil, parts.iv, append(parts.ciphertext, parts.tag...), aad)
}
// Encrypt the content encryption key.
func (ctx *symmetricKeyCipher) encryptKey(cek []byte, alg KeyAlgorithm) (recipientInfo, error) {
switch alg {
case DIRECT:
return recipientInfo{
header: &rawHeader{},
}, nil
case A128GCMKW, A192GCMKW, A256GCMKW:
aead := newAESGCM(len(ctx.key))
parts, err := aead.encrypt(ctx.key, []byte{}, cek)
if err != nil {
return recipientInfo{}, err
}
return recipientInfo{
header: &rawHeader{
Iv: newBuffer(parts.iv),
Tag: newBuffer(parts.tag),
},
encryptedKey: parts.ciphertext,
}, nil
case A128KW, A192KW, A256KW:
block, err := aes.NewCipher(ctx.key)
if err != nil {
return recipientInfo{}, err
}
jek, err := josecipher.KeyWrap(block, cek)
if err != nil {
return recipientInfo{}, err
}
return recipientInfo{
encryptedKey: jek,
header: &rawHeader{},
}, nil
}
return recipientInfo{}, ErrUnsupportedAlgorithm
}
// Decrypt the content encryption key.
func (ctx *symmetricKeyCipher) decryptKey(headers rawHeader, recipient *recipientInfo, generator keyGenerator) ([]byte, error) {
switch KeyAlgorithm(headers.Alg) {
case DIRECT:
cek := make([]byte, len(ctx.key))
copy(cek, ctx.key)
return cek, nil
case A128GCMKW, A192GCMKW, A256GCMKW:
aead := newAESGCM(len(ctx.key))
parts := &aeadParts{
iv: headers.Iv.bytes(),
ciphertext: recipient.encryptedKey,
tag: headers.Tag.bytes(),
}
cek, err := aead.decrypt(ctx.key, []byte{}, parts)
if err != nil {
return nil, err
}
return cek, nil
case A128KW, A192KW, A256KW:
block, err := aes.NewCipher(ctx.key)
if err != nil {
return nil, err
}
cek, err := josecipher.KeyUnwrap(block, recipient.encryptedKey)
if err != nil {
return nil, err
}
return cek, nil
}
return nil, ErrUnsupportedAlgorithm
}
// Sign the given payload
func (ctx symmetricMac) signPayload(payload []byte, alg SignatureAlgorithm) (Signature, error) {
mac, err := ctx.hmac(payload, alg)
if err != nil {
return Signature{}, errors.New("square/go-jose: failed to compute hmac")
}
return Signature{
Signature: mac,
protected: &rawHeader{},
}, nil
}
// Verify the given payload
func (ctx symmetricMac) verifyPayload(payload []byte, mac []byte, alg SignatureAlgorithm) error {
expected, err := ctx.hmac(payload, alg)
if err != nil {
return errors.New("square/go-jose: failed to compute hmac")
}
if len(mac) != len(expected) {
return errors.New("square/go-jose: invalid hmac")
}
match := subtle.ConstantTimeCompare(mac, expected)
if match != 1 {
return errors.New("square/go-jose: invalid hmac")
}
return nil
}
// Compute the HMAC based on the given alg value
func (ctx symmetricMac) hmac(payload []byte, alg SignatureAlgorithm) ([]byte, error) {
var hash func() hash.Hash
switch alg {
case HS256:
hash = sha256.New
case HS384:
hash = sha512.New384
case HS512:
hash = sha512.New
default:
return nil, ErrUnsupportedAlgorithm
}
hmac := hmac.New(hash, ctx.key)
// According to documentation, Write() on hash never fails
_, _ = hmac.Write(payload)
return hmac.Sum(nil), nil
}

View File

@ -0,0 +1,131 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"bytes"
"crypto/cipher"
"crypto/rand"
"io"
"testing"
)
func TestInvalidSymmetricAlgorithms(t *testing.T) {
_, err := newSymmetricRecipient("XYZ", []byte{})
if err != ErrUnsupportedAlgorithm {
t.Error("should not accept invalid algorithm")
}
enc := &symmetricKeyCipher{}
_, err = enc.encryptKey([]byte{}, "XYZ")
if err != ErrUnsupportedAlgorithm {
t.Error("should not accept invalid algorithm")
}
}
func TestAeadErrors(t *testing.T) {
aead := &aeadContentCipher{
keyBytes: 16,
authtagBytes: 16,
getAead: func(key []byte) (cipher.AEAD, error) {
return nil, ErrCryptoFailure
},
}
parts, err := aead.encrypt([]byte{}, []byte{}, []byte{})
if err != ErrCryptoFailure {
t.Error("should handle aead failure")
}
_, err = aead.decrypt([]byte{}, []byte{}, parts)
if err != ErrCryptoFailure {
t.Error("should handle aead failure")
}
}
func TestInvalidKey(t *testing.T) {
gcm := newAESGCM(16).(*aeadContentCipher)
_, err := gcm.getAead([]byte{})
if err == nil {
t.Error("should not accept invalid key")
}
}
func TestStaticKeyGen(t *testing.T) {
key := make([]byte, 32)
io.ReadFull(rand.Reader, key)
gen := &staticKeyGenerator{key: key}
if gen.keySize() != len(key) {
t.Error("static key generator reports incorrect size")
}
generated, _, err := gen.genKey()
if err != nil {
t.Error("static key generator should always succeed", err)
}
if !bytes.Equal(generated, key) {
t.Error("static key generator returns different data")
}
}
func TestVectorsAESGCM(t *testing.T) {
// Source: http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-29#appendix-A.1
plaintext := []byte{
84, 104, 101, 32, 116, 114, 117, 101, 32, 115, 105, 103, 110, 32,
111, 102, 32, 105, 110, 116, 101, 108, 108, 105, 103, 101, 110, 99,
101, 32, 105, 115, 32, 110, 111, 116, 32, 107, 110, 111, 119, 108,
101, 100, 103, 101, 32, 98, 117, 116, 32, 105, 109, 97, 103, 105,
110, 97, 116, 105, 111, 110, 46}
aad := []byte{
101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69,
116, 84, 48, 70, 70, 85, 67, 73, 115, 73, 109, 86, 117, 89, 121, 73,
54, 73, 107, 69, 121, 78, 84, 90, 72, 81, 48, 48, 105, 102, 81}
expectedCiphertext := []byte{
229, 236, 166, 241, 53, 191, 115, 196, 174, 43, 73, 109, 39, 122,
233, 96, 140, 206, 120, 52, 51, 237, 48, 11, 190, 219, 186, 80, 111,
104, 50, 142, 47, 167, 59, 61, 181, 127, 196, 21, 40, 82, 242, 32,
123, 143, 168, 226, 73, 216, 176, 144, 138, 247, 106, 60, 16, 205,
160, 109, 64, 63, 192}
expectedAuthtag := []byte{
92, 80, 104, 49, 133, 25, 161, 215, 173, 101, 219, 211, 136, 91, 210, 145}
// Mock random reader
randReader = bytes.NewReader([]byte{
177, 161, 244, 128, 84, 143, 225, 115, 63, 180, 3, 255, 107, 154,
212, 246, 138, 7, 110, 91, 112, 46, 34, 105, 47, 130, 203, 46, 122,
234, 64, 252, 227, 197, 117, 252, 2, 219, 233, 68, 180, 225, 77, 219})
defer resetRandReader()
enc := newAESGCM(32)
key, _, _ := randomKeyGenerator{size: 32}.genKey()
out, err := enc.encrypt(key, aad, plaintext)
if err != nil {
t.Error("Unable to encrypt:", err)
return
}
if bytes.Compare(out.ciphertext, expectedCiphertext) != 0 {
t.Error("Ciphertext did not match")
}
if bytes.Compare(out.tag, expectedAuthtag) != 0 {
t.Error("Auth tag did not match")
}
}

View File

@ -0,0 +1,74 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"crypto/x509"
"encoding/pem"
"fmt"
)
// LoadPublicKey loads a public key from PEM/DER-encoded data.
func LoadPublicKey(data []byte) (interface{}, error) {
input := data
block, _ := pem.Decode(data)
if block != nil {
input = block.Bytes
}
// Try to load SubjectPublicKeyInfo
pub, err0 := x509.ParsePKIXPublicKey(input)
if err0 == nil {
return pub, nil
}
cert, err1 := x509.ParseCertificate(input)
if err1 == nil {
return cert.PublicKey, nil
}
return nil, fmt.Errorf("square/go-jose: parse error, got '%s' and '%s'", err0, err1)
}
// LoadPrivateKey loads a private key from PEM/DER-encoded data.
func LoadPrivateKey(data []byte) (interface{}, error) {
input := data
block, _ := pem.Decode(data)
if block != nil {
input = block.Bytes
}
var priv interface{}
priv, err0 := x509.ParsePKCS1PrivateKey(input)
if err0 == nil {
return priv, nil
}
priv, err1 := x509.ParsePKCS8PrivateKey(input)
if err1 == nil {
return priv, nil
}
priv, err2 := x509.ParseECPrivateKey(input)
if err2 == nil {
return priv, nil
}
return nil, fmt.Errorf("square/go-jose: parse error, got '%s', '%s' and '%s'", err0, err1, err2)
}

View File

@ -0,0 +1,225 @@
/*-
* Copyright 2014 Square Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package jose
import (
"crypto/ecdsa"
"crypto/rand"
"crypto/rsa"
"encoding/base64"
"encoding/hex"
"math/big"
"regexp"
"testing"
)
// Reset random reader to original value
func resetRandReader() {
randReader = rand.Reader
}
// Build big int from hex-encoded string. Strips whitespace (for testing).
func fromHexInt(base16 string) *big.Int {
re := regexp.MustCompile(`\s+`)
val, ok := new(big.Int).SetString(re.ReplaceAllString(base16, ""), 16)
if !ok {
panic("Invalid test data")
}
return val
}
// Build big int from base64-encoded string. Strips whitespace (for testing).
func fromBase64Int(base64 string) *big.Int {
re := regexp.MustCompile(`\s+`)
val, err := base64URLDecode(re.ReplaceAllString(base64, ""))
if err != nil {
panic("Invalid test data")
}
return new(big.Int).SetBytes(val)
}
// Decode hex-encoded string into byte array. Strips whitespace (for testing).
func fromHexBytes(base16 string) []byte {
re := regexp.MustCompile(`\s+`)
val, err := hex.DecodeString(re.ReplaceAllString(base16, ""))
if err != nil {
panic("Invalid test data")
}
return val
}
// Decode base64-encoded string into byte array. Strips whitespace (for testing).
func fromBase64Bytes(b64 string) []byte {
re := regexp.MustCompile(`\s+`)
val, err := base64.StdEncoding.DecodeString(re.ReplaceAllString(b64, ""))
if err != nil {
panic("Invalid test data")
}
return val
}
// Test vectors below taken from crypto/x509/x509_test.go in the Go std lib.
var pkixPublicKey = `-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA3VoPN9PKUjKFLMwOge6+
wnDi8sbETGIx2FKXGgqtAKpzmem53kRGEQg8WeqRmp12wgp74TGpkEXsGae7RS1k
enJCnma4fii+noGH7R0qKgHvPrI2Bwa9hzsH8tHxpyM3qrXslOmD45EH9SxIDUBJ
FehNdaPbLP1gFyahKMsdfxFJLUvbUycuZSJ2ZnIgeVxwm4qbSvZInL9Iu4FzuPtg
fINKcbbovy1qq4KvPIrXzhbY3PWDc6btxCf3SE0JdE1MCPThntB62/bLMSQ7xdDR
FF53oIpvxe/SCOymfWq/LW849Ytv3Xwod0+wzAP8STXG4HSELS4UedPYeHJJJYcZ
+QIDAQAB
-----END PUBLIC KEY-----`
var pkcs1PrivateKey = `-----BEGIN RSA PRIVATE KEY-----
MIIBOgIBAAJBALKZD0nEffqM1ACuak0bijtqE2QrI/KLADv7l3kK3ppMyCuLKoF0
fd7Ai2KW5ToIwzFofvJcS/STa6HA5gQenRUCAwEAAQJBAIq9amn00aS0h/CrjXqu
/ThglAXJmZhOMPVn4eiu7/ROixi9sex436MaVeMqSNf7Ex9a8fRNfWss7Sqd9eWu
RTUCIQDasvGASLqmjeffBNLTXV2A5g4t+kLVCpsEIZAycV5GswIhANEPLmax0ME/
EO+ZJ79TJKN5yiGBRsv5yvx5UiHxajEXAiAhAol5N4EUyq6I9w1rYdhPMGpLfk7A
IU2snfRJ6Nq2CQIgFrPsWRCkV+gOYcajD17rEqmuLrdIRexpg8N1DOSXoJ8CIGlS
tAboUGBxTDq3ZroNism3DaMIbKPyYrAqhKov1h5V
-----END RSA PRIVATE KEY-----`
var ecdsaSHA256p384CertPem = `
-----BEGIN CERTIFICATE-----
MIICSjCCAdECCQDje/no7mXkVzAKBggqhkjOPQQDAjCBjjELMAkGA1UEBhMCVVMx
EzARBgNVBAgMCkNhbGlmb3JuaWExFjAUBgNVBAcMDU1vdW50YWluIFZpZXcxFDAS
BgNVBAoMC0dvb2dsZSwgSW5jMRcwFQYDVQQDDA53d3cuZ29vZ2xlLmNvbTEjMCEG
CSqGSIb3DQEJARYUZ29sYW5nLWRldkBnbWFpbC5jb20wHhcNMTIwNTIxMDYxMDM0
WhcNMjIwNTE5MDYxMDM0WjCBjjELMAkGA1UEBhMCVVMxEzARBgNVBAgMCkNhbGlm
b3JuaWExFjAUBgNVBAcMDU1vdW50YWluIFZpZXcxFDASBgNVBAoMC0dvb2dsZSwg
SW5jMRcwFQYDVQQDDA53d3cuZ29vZ2xlLmNvbTEjMCEGCSqGSIb3DQEJARYUZ29s
YW5nLWRldkBnbWFpbC5jb20wdjAQBgcqhkjOPQIBBgUrgQQAIgNiAARRuzRNIKRK
jIktEmXanNmrTR/q/FaHXLhWRZ6nHWe26Fw7Rsrbk+VjGy4vfWtNn7xSFKrOu5ze
qxKnmE0h5E480MNgrUiRkaGO2GMJJVmxx20aqkXOk59U8yGA4CghE6MwCgYIKoZI
zj0EAwIDZwAwZAIwBZEN8gvmRmfeP/9C1PRLzODIY4JqWub2PLRT4mv9GU+yw3Gr
PU9A3CHMdEcdw/MEAjBBO1lId8KOCh9UZunsSMfqXiVurpzmhWd6VYZ/32G+M+Mh
3yILeYQzllt/g0rKVRk=
-----END CERTIFICATE-----`
var ecdsaSHA256p384CertDer = fromBase64Bytes(`
MIICSjCCAdECCQDje/no7mXkVzAKBggqhkjOPQQDAjCBjjELMAkGA1UEBhMCVVMx
EzARBgNVBAgMCkNhbGlmb3JuaWExFjAUBgNVBAcMDU1vdW50YWluIFZpZXcxFDAS
BgNVBAoMC0dvb2dsZSwgSW5jMRcwFQYDVQQDDA53d3cuZ29vZ2xlLmNvbTEjMCEG
CSqGSIb3DQEJARYUZ29sYW5nLWRldkBnbWFpbC5jb20wHhcNMTIwNTIxMDYxMDM0
WhcNMjIwNTE5MDYxMDM0WjCBjjELMAkGA1UEBhMCVVMxEzARBgNVBAgMCkNhbGlm
b3JuaWExFjAUBgNVBAcMDU1vdW50YWluIFZpZXcxFDASBgNVBAoMC0dvb2dsZSwg
SW5jMRcwFQYDVQQDDA53d3cuZ29vZ2xlLmNvbTEjMCEGCSqGSIb3DQEJARYUZ29s
YW5nLWRldkBnbWFpbC5jb20wdjAQBgcqhkjOPQIBBgUrgQQAIgNiAARRuzRNIKRK
jIktEmXanNmrTR/q/FaHXLhWRZ6nHWe26Fw7Rsrbk+VjGy4vfWtNn7xSFKrOu5ze
qxKnmE0h5E480MNgrUiRkaGO2GMJJVmxx20aqkXOk59U8yGA4CghE6MwCgYIKoZI
zj0EAwIDZwAwZAIwBZEN8gvmRmfeP/9C1PRLzODIY4JqWub2PLRT4mv9GU+yw3Gr
PU9A3CHMdEcdw/MEAjBBO1lId8KOCh9UZunsSMfqXiVurpzmhWd6VYZ/32G+M+Mh
3yILeYQzllt/g0rKVRk=`)
var pkcs8ECPrivateKey = `
-----BEGIN PRIVATE KEY-----
MIHtAgEAMBAGByqGSM49AgEGBSuBBAAjBIHVMIHSAgEBBEHqkl65VsjYDQWIHfgv
zQLPa0JZBsaJI16mjiH8k6VA4lgfK/KNldlEsY433X7wIzo43u8OpX7Nv7n8pVRH
15XWK6GBiQOBhgAEAfDuikMI4bWsyse7t8iSCmjt9fneW/qStZuIPuVLo7mSJdud
Cs3J/x9wOnnhLv1u+0atnq5HKKdL4ff3itJPlhmSAQzByKQ5LTvB7d6fn95GJVK/
hNuS5qGBpB7qeMXVFoki0/2RZIOway8/fXjmNYwe4v/XB5LLn4hcTvEUGYcF8M9K
-----END PRIVATE KEY-----`
var ecPrivateKey = `
-----BEGIN EC PRIVATE KEY-----
MIHcAgEBBEIBv2rdY9mWGD/UgiuXB0LJcUzgaB6TXq/Ra1jrZKBV3IGSacM5QDFu
N8yrywiQaTDEqn1zVcLwrnqoQux3gWN1jxugBwYFK4EEACOhgYkDgYYABAFJgaM/
2a3+gE6Khm/1PYftqNwAzQ21HSLp27q2lTN+GBFho691ARFRkr9UzlQ8gRnhkTbu
yGfASamlHsYlr3Tv+gFc4BY8SU0q8kzpQ0dOHWFk7dfGFmKwhJrSFIIOeRn/LY03
XsVFctNDsGhobS2JguQrxhGx8Ll7vQCakV/PEmCQJA==
-----END EC PRIVATE KEY-----`
var ecPrivateKeyDer = fromBase64Bytes(`
MIHcAgEBBEIBv2rdY9mWGD/UgiuXB0LJcUzgaB6TXq/Ra1jrZKBV3IGSacM5QDFu
N8yrywiQaTDEqn1zVcLwrnqoQux3gWN1jxugBwYFK4EEACOhgYkDgYYABAFJgaM/
2a3+gE6Khm/1PYftqNwAzQ21HSLp27q2lTN+GBFho691ARFRkr9UzlQ8gRnhkTbu
yGfASamlHsYlr3Tv+gFc4BY8SU0q8kzpQ0dOHWFk7dfGFmKwhJrSFIIOeRn/LY03
XsVFctNDsGhobS2JguQrxhGx8Ll7vQCakV/PEmCQJA==`)
var invalidPemKey = `
-----BEGIN PUBLIC KEY-----
MIHcAgEBBEIBv2rdY9mWGD/UgiuXB0LJcUzgaB6TXq/Ra1jrZKBV3IGSacM5QDFu
XsVFctNDsGhobS2JguQrxhGx8Ll7vQCakV/PEmCQJA==
-----END PUBLIC KEY-----`
func TestLoadPublicKey(t *testing.T) {
pub, err := LoadPublicKey([]byte(pkixPublicKey))
switch pub.(type) {
case *rsa.PublicKey:
default:
t.Error("failed to parse RSA PKIX public key:", err)
}
pub, err = LoadPublicKey([]byte(ecdsaSHA256p384CertPem))
switch pub.(type) {
case *ecdsa.PublicKey:
default:
t.Error("failed to parse ECDSA X.509 cert:", err)
}
pub, err = LoadPublicKey([]byte(ecdsaSHA256p384CertDer))
switch pub.(type) {
case *ecdsa.PublicKey:
default:
t.Error("failed to parse ECDSA X.509 cert:", err)
}
pub, err = LoadPublicKey([]byte("###"))
if err == nil {
t.Error("should not parse invalid key")
}
pub, err = LoadPublicKey([]byte(invalidPemKey))
if err == nil {
t.Error("should not parse invalid key")
}
}
func TestLoadPrivateKey(t *testing.T) {
priv, err := LoadPrivateKey([]byte(pkcs1PrivateKey))
switch priv.(type) {
case *rsa.PrivateKey:
default:
t.Error("failed to parse RSA PKCS1 private key:", err)
}
priv, err = LoadPrivateKey([]byte(pkcs8ECPrivateKey))
if _, ok := priv.(*ecdsa.PrivateKey); !ok {
t.Error("failed to parse EC PKCS8 private key:", err)
}
priv, err = LoadPrivateKey([]byte(ecPrivateKey))
if _, ok := priv.(*ecdsa.PrivateKey); !ok {
t.Error("failed to parse EC private key:", err)
}
priv, err = LoadPrivateKey([]byte(ecPrivateKeyDer))
if _, ok := priv.(*ecdsa.PrivateKey); !ok {
t.Error("failed to parse EC private key:", err)
}
priv, err = LoadPrivateKey([]byte("###"))
if err == nil {
t.Error("should not parse invalid key")
}
priv, err = LoadPrivateKey([]byte(invalidPemKey))
if err == nil {
t.Error("should not parse invalid key")
}
}

View File

@ -0,0 +1,628 @@
package acme
import (
"crypto/rsa"
"crypto/x509"
"encoding/base64"
"encoding/json"
"errors"
"fmt"
"io/ioutil"
"log"
"net/http"
"regexp"
"strconv"
"strings"
"time"
)
var (
// Logger is an optional custom logger.
Logger *log.Logger
)
// logf writes a log entry. It uses Logger if not
// nil, otherwise it uses the default log.Logger.
func logf(format string, args ...interface{}) {
if Logger != nil {
Logger.Printf(format, args...)
} else {
log.Printf(format, args...)
}
}
// User interface is to be implemented by users of this library.
// It is used by the client type to get user specific information.
type User interface {
GetEmail() string
GetRegistration() *RegistrationResource
GetPrivateKey() *rsa.PrivateKey
}
// Interface for all challenge solvers to implement.
type solver interface {
Solve(challenge challenge, domain string) error
}
type validateFunc func(j *jws, domain, uri string, chlng challenge) error
// Client is the user-friendy way to ACME
type Client struct {
directory directory
user User
jws *jws
keyBits int
issuerCert []byte
solvers map[string]solver
}
// NewClient creates a new ACME client on behalf of the user. The client will depend on
// the ACME directory located at caDirURL for the rest of its actions. It will
// generate private keys for certificates of size keyBits.
func NewClient(caDirURL string, user User, keyBits int) (*Client, error) {
privKey := user.GetPrivateKey()
if privKey == nil {
return nil, errors.New("private key was nil")
}
if err := privKey.Validate(); err != nil {
return nil, fmt.Errorf("invalid private key: %v", err)
}
var dir directory
if _, err := getJSON(caDirURL, &dir); err != nil {
return nil, fmt.Errorf("get directory at '%s': %v", caDirURL, err)
}
if dir.NewRegURL == "" {
return nil, errors.New("directory missing new registration URL")
}
if dir.NewAuthzURL == "" {
return nil, errors.New("directory missing new authz URL")
}
if dir.NewCertURL == "" {
return nil, errors.New("directory missing new certificate URL")
}
if dir.RevokeCertURL == "" {
return nil, errors.New("directory missing revoke certificate URL")
}
jws := &jws{privKey: privKey, directoryURL: caDirURL}
// REVIEW: best possibility?
// Add all available solvers with the right index as per ACME
// spec to this map. Otherwise they won`t be found.
solvers := make(map[string]solver)
solvers["http-01"] = &httpChallenge{jws: jws, validate: validate}
solvers["tls-sni-01"] = &tlsSNIChallenge{jws: jws, validate: validate}
return &Client{directory: dir, user: user, jws: jws, keyBits: keyBits, solvers: solvers}, nil
}
// SetHTTPPort specifies a custom port to be used for HTTP based challenges.
// If this option is not used, the default port 80 will be used.
func (c *Client) SetHTTPPort(port string) {
if chlng, ok := c.solvers["http-01"]; ok {
chlng.(*httpChallenge).optPort = port
}
}
// SetTLSPort specifies a custom port to be used for TLS based challenges.
// If this option is not used, the default port 443 will be used.
func (c *Client) SetTLSPort(port string) {
if chlng, ok := c.solvers["tls-sni-01"]; ok {
chlng.(*tlsSNIChallenge).optPort = port
}
}
// ExcludeChallenges explicitly removes challenges from the pool for solving.
func (c *Client) ExcludeChallenges(challenges []string) {
// Loop through all challenges and delete the requested one if found.
for _, challenge := range challenges {
if _, ok := c.solvers[challenge]; ok {
delete(c.solvers, challenge)
}
}
}
// Register the current account to the ACME server.
func (c *Client) Register() (*RegistrationResource, error) {
if c == nil || c.user == nil {
return nil, errors.New("acme: cannot register a nil client or user")
}
logf("[INFO] acme: Registering account for %s", c.user.GetEmail())
regMsg := registrationMessage{
Resource: "new-reg",
}
if c.user.GetEmail() != "" {
regMsg.Contact = []string{"mailto:" + c.user.GetEmail()}
} else {
regMsg.Contact = []string{}
}
var serverReg Registration
hdr, err := postJSON(c.jws, c.directory.NewRegURL, regMsg, &serverReg)
if err != nil {
return nil, err
}
reg := &RegistrationResource{Body: serverReg}
links := parseLinks(hdr["Link"])
reg.URI = hdr.Get("Location")
if links["terms-of-service"] != "" {
reg.TosURL = links["terms-of-service"]
}
if links["next"] != "" {
reg.NewAuthzURL = links["next"]
} else {
return nil, errors.New("acme: The server did not return 'next' link to proceed")
}
return reg, nil
}
// AgreeToTOS updates the Client registration and sends the agreement to
// the server.
func (c *Client) AgreeToTOS() error {
c.user.GetRegistration().Body.Agreement = c.user.GetRegistration().TosURL
c.user.GetRegistration().Body.Resource = "reg"
_, err := postJSON(c.jws, c.user.GetRegistration().URI, c.user.GetRegistration().Body, nil)
return err
}
// ObtainCertificate tries to obtain a single certificate using all domains passed into it.
// The first domain in domains is used for the CommonName field of the certificate, all other
// domains are added using the Subject Alternate Names extension.
// If bundle is true, the []byte contains both the issuer certificate and
// your issued certificate as a bundle.
// This function will never return a partial certificate. If one domain in the list fails,
// the whole certificate will fail.
func (c *Client) ObtainCertificate(domains []string, bundle bool) (CertificateResource, map[string]error) {
if bundle {
logf("[INFO][%s] acme: Obtaining bundled SAN certificate", strings.Join(domains, ", "))
} else {
logf("[INFO][%s] acme: Obtaining SAN certificate", strings.Join(domains, ", "))
}
challenges, failures := c.getChallenges(domains)
// If any challenge fails - return. Do not generate partial SAN certificates.
if len(failures) > 0 {
return CertificateResource{}, failures
}
errs := c.solveChallenges(challenges)
// If any challenge fails - return. Do not generate partial SAN certificates.
if len(errs) > 0 {
return CertificateResource{}, errs
}
logf("[INFO][%s] acme: Validations succeeded; requesting certificates", strings.Join(domains, ", "))
cert, err := c.requestCertificate(challenges, bundle)
if err != nil {
for _, chln := range challenges {
failures[chln.Domain] = err
}
}
return cert, failures
}
// RevokeCertificate takes a PEM encoded certificate or bundle and tries to revoke it at the CA.
func (c *Client) RevokeCertificate(certificate []byte) error {
certificates, err := parsePEMBundle(certificate)
if err != nil {
return err
}
x509Cert := certificates[0]
if x509Cert.IsCA {
return fmt.Errorf("Certificate bundle starts with a CA certificate")
}
encodedCert := base64.URLEncoding.EncodeToString(x509Cert.Raw)
_, err = postJSON(c.jws, c.directory.RevokeCertURL, revokeCertMessage{Resource: "revoke-cert", Certificate: encodedCert}, nil)
return err
}
// RenewCertificate takes a CertificateResource and tries to renew the certificate.
// If the renewal process succeeds, the new certificate will ge returned in a new CertResource.
// Please be aware that this function will return a new certificate in ANY case that is not an error.
// If the server does not provide us with a new cert on a GET request to the CertURL
// this function will start a new-cert flow where a new certificate gets generated.
// If bundle is true, the []byte contains both the issuer certificate and
// your issued certificate as a bundle.
func (c *Client) RenewCertificate(cert CertificateResource, bundle bool) (CertificateResource, error) {
// Input certificate is PEM encoded. Decode it here as we may need the decoded
// cert later on in the renewal process. The input may be a bundle or a single certificate.
certificates, err := parsePEMBundle(cert.Certificate)
if err != nil {
return CertificateResource{}, err
}
x509Cert := certificates[0]
if x509Cert.IsCA {
return CertificateResource{}, fmt.Errorf("[%s] Certificate bundle starts with a CA certificate", cert.Domain)
}
// This is just meant to be informal for the user.
timeLeft := x509Cert.NotAfter.Sub(time.Now().UTC())
logf("[INFO][%s] acme: Trying renewal with %d hours remaining", cert.Domain, int(timeLeft.Hours()))
// The first step of renewal is to check if we get a renewed cert
// directly from the cert URL.
resp, err := http.Get(cert.CertURL)
if err != nil {
return CertificateResource{}, err
}
defer resp.Body.Close()
serverCertBytes, err := ioutil.ReadAll(resp.Body)
if err != nil {
return CertificateResource{}, err
}
serverCert, err := x509.ParseCertificate(serverCertBytes)
if err != nil {
return CertificateResource{}, err
}
// If the server responds with a different certificate we are effectively renewed.
// TODO: Further test if we can actually use the new certificate (Our private key works)
if !x509Cert.Equal(serverCert) {
logf("[INFO][%s] acme: Server responded with renewed certificate", cert.Domain)
issuedCert := pemEncode(derCertificateBytes(serverCertBytes))
// If bundle is true, we want to return a certificate bundle.
// To do this, we need the issuer certificate.
if bundle {
// The issuer certificate link is always supplied via an "up" link
// in the response headers of a new certificate.
links := parseLinks(resp.Header["Link"])
issuerCert, err := c.getIssuerCertificate(links["up"])
if err != nil {
// If we fail to aquire the issuer cert, return the issued certificate - do not fail.
logf("[ERROR][%s] acme: Could not bundle issuer certificate: %v", cert.Domain, err)
} else {
// Success - append the issuer cert to the issued cert.
issuerCert = pemEncode(derCertificateBytes(issuerCert))
issuedCert = append(issuedCert, issuerCert...)
cert.Certificate = issuedCert
}
}
cert.Certificate = issuedCert
return cert, nil
}
newCert, failures := c.ObtainCertificate([]string{cert.Domain}, bundle)
return newCert, failures[cert.Domain]
}
// Looks through the challenge combinations to find a solvable match.
// Then solves the challenges in series and returns.
func (c *Client) solveChallenges(challenges []authorizationResource) map[string]error {
// loop through the resources, basically through the domains.
failures := make(map[string]error)
for _, authz := range challenges {
// no solvers - no solving
if solvers := c.chooseSolvers(authz.Body, authz.Domain); solvers != nil {
for i, solver := range solvers {
// TODO: do not immediately fail if one domain fails to validate.
err := solver.Solve(authz.Body.Challenges[i], authz.Domain)
if err != nil {
failures[authz.Domain] = err
}
}
} else {
failures[authz.Domain] = fmt.Errorf("[%s] acme: Could not determine solvers", authz.Domain)
}
}
return failures
}
// Checks all combinations from the server and returns an array of
// solvers which should get executed in series.
func (c *Client) chooseSolvers(auth authorization, domain string) map[int]solver {
for _, combination := range auth.Combinations {
solvers := make(map[int]solver)
for _, idx := range combination {
if solver, ok := c.solvers[auth.Challenges[idx].Type]; ok {
solvers[idx] = solver
} else {
logf("[INFO][%s] acme: Could not find solver for: %s", domain, auth.Challenges[idx].Type)
}
}
// If we can solve the whole combination, return the solvers
if len(solvers) == len(combination) {
return solvers
}
}
return nil
}
// Get the challenges needed to proof our identifier to the ACME server.
func (c *Client) getChallenges(domains []string) ([]authorizationResource, map[string]error) {
resc, errc := make(chan authorizationResource), make(chan domainError)
for _, domain := range domains {
go func(domain string) {
authMsg := authorization{Resource: "new-authz", Identifier: identifier{Type: "dns", Value: domain}}
var authz authorization
hdr, err := postJSON(c.jws, c.user.GetRegistration().NewAuthzURL, authMsg, &authz)
if err != nil {
errc <- domainError{Domain: domain, Error: err}
return
}
links := parseLinks(hdr["Link"])
if links["next"] == "" {
logf("[ERROR][%s] acme: Server did not provide next link to proceed", domain)
return
}
resc <- authorizationResource{Body: authz, NewCertURL: links["next"], AuthURL: hdr.Get("Location"), Domain: domain}
}(domain)
}
responses := make(map[string]authorizationResource)
failures := make(map[string]error)
for i := 0; i < len(domains); i++ {
select {
case res := <-resc:
responses[res.Domain] = res
case err := <-errc:
failures[err.Domain] = err.Error
}
}
challenges := make([]authorizationResource, 0, len(responses))
for _, domain := range domains {
if challenge, ok := responses[domain]; ok {
challenges = append(challenges, challenge)
}
}
close(resc)
close(errc)
return challenges, failures
}
func (c *Client) requestCertificate(authz []authorizationResource, bundle bool) (CertificateResource, error) {
if len(authz) == 0 {
return CertificateResource{}, errors.New("Passed no authorizations to requestCertificate!")
}
commonName := authz[0]
privKey, err := generatePrivateKey(rsakey, c.keyBits)
if err != nil {
return CertificateResource{}, err
}
var san []string
var authURLs []string
for _, auth := range authz[1:] {
san = append(san, auth.Domain)
authURLs = append(authURLs, auth.AuthURL)
}
// TODO: should the CSR be customizable?
csr, err := generateCsr(privKey.(*rsa.PrivateKey), commonName.Domain, san)
if err != nil {
return CertificateResource{}, err
}
csrString := base64.URLEncoding.EncodeToString(csr)
jsonBytes, err := json.Marshal(csrMessage{Resource: "new-cert", Csr: csrString, Authorizations: authURLs})
if err != nil {
return CertificateResource{}, err
}
resp, err := c.jws.post(commonName.NewCertURL, jsonBytes)
if err != nil {
return CertificateResource{}, err
}
privateKeyPem := pemEncode(privKey)
cerRes := CertificateResource{
Domain: commonName.Domain,
CertURL: resp.Header.Get("Location"),
PrivateKey: privateKeyPem}
for {
switch resp.StatusCode {
case 202:
case 201:
cert, err := ioutil.ReadAll(limitReader(resp.Body, 1024*1024))
resp.Body.Close()
if err != nil {
return CertificateResource{}, err
}
// The server returns a body with a length of zero if the
// certificate was not ready at the time this request completed.
// Otherwise the body is the certificate.
if len(cert) > 0 {
cerRes.CertStableURL = resp.Header.Get("Content-Location")
issuedCert := pemEncode(derCertificateBytes(cert))
// If bundle is true, we want to return a certificate bundle.
// To do this, we need the issuer certificate.
if bundle {
// The issuer certificate link is always supplied via an "up" link
// in the response headers of a new certificate.
links := parseLinks(resp.Header["Link"])
issuerCert, err := c.getIssuerCertificate(links["up"])
if err != nil {
// If we fail to aquire the issuer cert, return the issued certificate - do not fail.
logf("[WARNING][%s] acme: Could not bundle issuer certificate: %v", commonName.Domain, err)
} else {
// Success - append the issuer cert to the issued cert.
issuerCert = pemEncode(derCertificateBytes(issuerCert))
issuedCert = append(issuedCert, issuerCert...)
}
}
cerRes.Certificate = issuedCert
logf("[INFO][%s] Server responded with a certificate.", commonName.Domain)
return cerRes, nil
}
// The certificate was granted but is not yet issued.
// Check retry-after and loop.
ra := resp.Header.Get("Retry-After")
retryAfter, err := strconv.Atoi(ra)
if err != nil {
return CertificateResource{}, err
}
logf("[INFO][%s] acme: Server responded with status 202; retrying after %ds", commonName.Domain, retryAfter)
time.Sleep(time.Duration(retryAfter) * time.Second)
break
default:
return CertificateResource{}, handleHTTPError(resp)
}
resp, err = http.Get(cerRes.CertURL)
if err != nil {
return CertificateResource{}, err
}
}
}
// getIssuerCertificate requests the issuer certificate and caches it for
// subsequent requests.
func (c *Client) getIssuerCertificate(url string) ([]byte, error) {
logf("[INFO] acme: Requesting issuer cert from %s", url)
if c.issuerCert != nil {
return c.issuerCert, nil
}
resp, err := http.Get(url)
if err != nil {
return nil, err
}
defer resp.Body.Close()
issuerBytes, err := ioutil.ReadAll(limitReader(resp.Body, 1024*1024))
if err != nil {
return nil, err
}
_, err = x509.ParseCertificate(issuerBytes)
if err != nil {
return nil, err
}
c.issuerCert = issuerBytes
return issuerBytes, err
}
func parseLinks(links []string) map[string]string {
aBrkt := regexp.MustCompile("[<>]")
slver := regexp.MustCompile("(.+) *= *\"(.+)\"")
linkMap := make(map[string]string)
for _, link := range links {
link = aBrkt.ReplaceAllString(link, "")
parts := strings.Split(link, ";")
matches := slver.FindStringSubmatch(parts[1])
if len(matches) > 0 {
linkMap[matches[2]] = parts[0]
}
}
return linkMap
}
// validate makes the ACME server start validating a
// challenge response, only returning once it is done.
func validate(j *jws, domain, uri string, chlng challenge) error {
var challengeResponse challenge
hdr, err := postJSON(j, uri, chlng, &challengeResponse)
if err != nil {
return err
}
// After the path is sent, the ACME server will access our server.
// Repeatedly check the server for an updated status on our request.
for {
switch challengeResponse.Status {
case "valid":
logf("[INFO][%s] The server validated our request", domain)
return nil
case "pending":
break
case "invalid":
return handleChallengeError(challengeResponse)
default:
return errors.New("The server returned an unexpected state.")
}
ra, err := strconv.Atoi(hdr.Get("Retry-After"))
if err != nil {
// The ACME server MUST return a Retry-After.
// If it doesn't, we'll just poll hard.
ra = 1
}
time.Sleep(time.Duration(ra) * time.Second)
hdr, err = getJSON(uri, &challengeResponse)
if err != nil {
return err
}
}
}
// getJSON performs an HTTP GET request and parses the response body
// as JSON, into the provided respBody object.
func getJSON(uri string, respBody interface{}) (http.Header, error) {
resp, err := http.Get(uri)
if err != nil {
return nil, fmt.Errorf("failed to get %q: %v", uri, err)
}
defer resp.Body.Close()
if resp.StatusCode >= http.StatusBadRequest {
return resp.Header, handleHTTPError(resp)
}
return resp.Header, json.NewDecoder(resp.Body).Decode(respBody)
}
// postJSON performs an HTTP POST request and parses the response body
// as JSON, into the provided respBody object.
func postJSON(j *jws, uri string, reqBody, respBody interface{}) (http.Header, error) {
jsonBytes, err := json.Marshal(reqBody)
if err != nil {
return nil, errors.New("Failed to marshal network message...")
}
resp, err := j.post(uri, jsonBytes)
if err != nil {
return nil, fmt.Errorf("Failed to post JWS message. -> %v", err)
}
defer resp.Body.Close()
if resp.StatusCode >= http.StatusBadRequest {
return resp.Header, handleHTTPError(resp)
}
if respBody == nil {
return resp.Header, nil
}
return resp.Header, json.NewDecoder(resp.Body).Decode(respBody)
}

View File

@ -0,0 +1,176 @@
package acme
import (
"crypto/rand"
"crypto/rsa"
"encoding/json"
"net/http"
"net/http/httptest"
"strings"
"testing"
)
func TestNewClient(t *testing.T) {
keyBits := 32 // small value keeps test fast
key, err := rsa.GenerateKey(rand.Reader, keyBits)
if err != nil {
t.Fatal("Could not generate test key:", err)
}
user := mockUser{
email: "test@test.com",
regres: new(RegistrationResource),
privatekey: key,
}
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
data, _ := json.Marshal(directory{NewAuthzURL: "http://test", NewCertURL: "http://test", NewRegURL: "http://test", RevokeCertURL: "http://test"})
w.Write(data)
}))
client, err := NewClient(ts.URL, user, keyBits)
if err != nil {
t.Fatalf("Could not create client: %v", err)
}
if client.jws == nil {
t.Fatalf("Expected client.jws to not be nil")
}
if expected, actual := key, client.jws.privKey; actual != expected {
t.Errorf("Expected jws.privKey to be %p but was %p", expected, actual)
}
if client.keyBits != keyBits {
t.Errorf("Expected keyBits to be %d but was %d", keyBits, client.keyBits)
}
if expected, actual := 2, len(client.solvers); actual != expected {
t.Fatalf("Expected %d solver(s), got %d", expected, actual)
}
}
func TestClientOptPort(t *testing.T) {
keyBits := 32 // small value keeps test fast
key, err := rsa.GenerateKey(rand.Reader, keyBits)
if err != nil {
t.Fatal("Could not generate test key:", err)
}
user := mockUser{
email: "test@test.com",
regres: new(RegistrationResource),
privatekey: key,
}
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
data, _ := json.Marshal(directory{NewAuthzURL: "http://test", NewCertURL: "http://test", NewRegURL: "http://test", RevokeCertURL: "http://test"})
w.Write(data)
}))
optPort := "1234"
client, err := NewClient(ts.URL, user, keyBits)
if err != nil {
t.Fatalf("Could not create client: %v", err)
}
client.SetHTTPPort(optPort)
client.SetTLSPort(optPort)
httpSolver, ok := client.solvers["http-01"].(*httpChallenge)
if !ok {
t.Fatal("Expected http-01 solver to be httpChallenge type")
}
if httpSolver.jws != client.jws {
t.Error("Expected http-01 to have same jws as client")
}
if httpSolver.optPort != optPort {
t.Errorf("Expected http-01 to have optPort %s but was %s", optPort, httpSolver.optPort)
}
httpsSolver, ok := client.solvers["tls-sni-01"].(*tlsSNIChallenge)
if !ok {
t.Fatal("Expected tls-sni-01 solver to be httpChallenge type")
}
if httpsSolver.jws != client.jws {
t.Error("Expected tls-sni-01 to have same jws as client")
}
if httpsSolver.optPort != optPort {
t.Errorf("Expected tls-sni-01 to have optPort %s but was %s", optPort, httpSolver.optPort)
}
}
func TestValidate(t *testing.T) {
var statuses []string
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
// Minimal stub ACME server for validation.
w.Header().Add("Replay-Nonce", "12345")
w.Header().Add("Retry-After", "0")
switch r.Method {
case "HEAD":
case "POST":
st := statuses[0]
statuses = statuses[1:]
writeJSONResponse(w, &challenge{Type: "http-01", Status: st, URI: "http://example.com/", Token: "token"})
case "GET":
st := statuses[0]
statuses = statuses[1:]
writeJSONResponse(w, &challenge{Type: "http-01", Status: st, URI: "http://example.com/", Token: "token"})
default:
http.Error(w, r.Method, http.StatusMethodNotAllowed)
}
}))
defer ts.Close()
privKey, _ := generatePrivateKey(rsakey, 512)
j := &jws{privKey: privKey.(*rsa.PrivateKey), directoryURL: ts.URL}
tsts := []struct {
name string
statuses []string
want string
}{
{"POST-unexpected", []string{"weird"}, "unexpected"},
{"POST-valid", []string{"valid"}, ""},
{"POST-invalid", []string{"invalid"}, "Error Detail"},
{"GET-unexpected", []string{"pending", "weird"}, "unexpected"},
{"GET-valid", []string{"pending", "valid"}, ""},
{"GET-invalid", []string{"pending", "invalid"}, "Error Detail"},
}
for _, tst := range tsts {
statuses = tst.statuses
if err := validate(j, "example.com", ts.URL, challenge{Type: "http-01", Token: "token"}); err == nil && tst.want != "" {
t.Errorf("[%s] validate: got error %v, want something with %q", tst.name, err, tst.want)
} else if err != nil && !strings.Contains(err.Error(), tst.want) {
t.Errorf("[%s] validate: got error %v, want something with %q", tst.name, err, tst.want)
}
}
}
// writeJSONResponse marshals the body as JSON and writes it to the response.
func writeJSONResponse(w http.ResponseWriter, body interface{}) {
bs, err := json.Marshal(body)
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return
}
w.Header().Set("Content-Type", "application/json")
if _, err := w.Write(bs); err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
}
}
// stubValidate is like validate, except it does nothing.
func stubValidate(j *jws, domain, uri string, chlng challenge) error {
return nil
}
type mockUser struct {
email string
regres *RegistrationResource
privatekey *rsa.PrivateKey
}
func (u mockUser) GetEmail() string { return u.email }
func (u mockUser) GetRegistration() *RegistrationResource { return u.regres }
func (u mockUser) GetPrivateKey() *rsa.PrivateKey { return u.privatekey }

View File

@ -0,0 +1,320 @@
package acme
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"crypto/x509/pkix"
"encoding/base64"
"encoding/binary"
"encoding/pem"
"errors"
"fmt"
"io"
"io/ioutil"
"math/big"
"net/http"
"strings"
"time"
"github.com/khlieng/dispatch/Godeps/_workspace/src/golang.org/x/crypto/ocsp"
"github.com/khlieng/dispatch/Godeps/_workspace/src/golang.org/x/crypto/sha3"
)
type keyType int
type derCertificateBytes []byte
const (
eckey keyType = iota
rsakey
)
const (
// OCSPGood means that the certificate is valid.
OCSPGood = ocsp.Good
// OCSPRevoked means that the certificate has been deliberately revoked.
OCSPRevoked = ocsp.Revoked
// OCSPUnknown means that the OCSP responder doesn't know about the certificate.
OCSPUnknown = ocsp.Unknown
// OCSPServerFailed means that the OCSP responder failed to process the request.
OCSPServerFailed = ocsp.ServerFailed
)
// GetOCSPForCert takes a PEM encoded cert or cert bundle returning the raw OCSP response,
// the parsed response, and an error, if any. The returned []byte can be passed directly
// into the OCSPStaple property of a tls.Certificate. If the bundle only contains the
// issued certificate, this function will try to get the issuer certificate from the
// IssuingCertificateURL in the certificate. If the []byte and/or ocsp.Response return
// values are nil, the OCSP status may be assumed OCSPUnknown.
func GetOCSPForCert(bundle []byte) ([]byte, *ocsp.Response, error) {
certificates, err := parsePEMBundle(bundle)
if err != nil {
return nil, nil, err
}
// We only got one certificate, means we have no issuer certificate - get it.
if len(certificates) == 1 {
// TODO: build fallback. If this fails, check the remaining array entries.
if len(certificates[0].IssuingCertificateURL) == 0 {
return nil, nil, errors.New("no issuing certificate URL")
}
resp, err := http.Get(certificates[0].IssuingCertificateURL[0])
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
issuerBytes, err := ioutil.ReadAll(limitReader(resp.Body, 1024*1024))
if err != nil {
return nil, nil, err
}
issuerCert, err := x509.ParseCertificate(issuerBytes)
if err != nil {
return nil, nil, err
}
// Insert it into the slice on position 0
// We want it ordered right SRV CRT -> CA
certificates = append(certificates, issuerCert)
}
// We expect the certificate slice to be ordered downwards the chain.
// SRV CRT -> CA. We need to pull the cert and issuer cert out of it,
// which should always be the last two certificates.
issuedCert := certificates[0]
issuerCert := certificates[1]
// Finally kick off the OCSP request.
ocspReq, err := ocsp.CreateRequest(issuedCert, issuerCert, nil)
if err != nil {
return nil, nil, err
}
reader := bytes.NewReader(ocspReq)
req, err := http.Post(issuedCert.OCSPServer[0], "application/ocsp-request", reader)
if err != nil {
return nil, nil, err
}
defer req.Body.Close()
ocspResBytes, err := ioutil.ReadAll(limitReader(req.Body, 1024*1024))
ocspRes, err := ocsp.ParseResponse(ocspResBytes, issuerCert)
if err != nil {
return nil, nil, err
}
if ocspRes.Certificate == nil {
err = ocspRes.CheckSignatureFrom(issuerCert)
if err != nil {
return nil, nil, err
}
}
return ocspResBytes, ocspRes, nil
}
func getKeyAuthorization(token string, key interface{}) (string, error) {
// Generate the Key Authorization for the challenge
jwk := keyAsJWK(key)
if jwk == nil {
return "", errors.New("Could not generate JWK from key.")
}
thumbBytes, err := jwk.Thumbprint(crypto.SHA256)
if err != nil {
return "", err
}
// unpad the base64URL
keyThumb := base64.URLEncoding.EncodeToString(thumbBytes)
index := strings.Index(keyThumb, "=")
if index != -1 {
keyThumb = keyThumb[:index]
}
return token + "." + keyThumb, nil
}
// Derive the shared secret according to acme spec 5.6
func performECDH(priv *ecdsa.PrivateKey, pub *ecdsa.PublicKey, outLen int, label string) []byte {
// Derive Z from the private and public keys according to SEC 1 Ver. 2.0 - 3.3.1
Z, _ := priv.PublicKey.ScalarMult(pub.X, pub.Y, priv.D.Bytes())
if len(Z.Bytes())+len(label)+4 > 384 {
return nil
}
if outLen < 384*(2^32-1) {
return nil
}
// Derive the shared secret key using the ANS X9.63 KDF - SEC 1 Ver. 2.0 - 3.6.1
hasher := sha3.New384()
buffer := make([]byte, outLen)
bufferLen := 0
for i := 0; i < outLen/384; i++ {
hasher.Reset()
// Ki = Hash(Z || Counter || [SharedInfo])
hasher.Write(Z.Bytes())
binary.Write(hasher, binary.BigEndian, i)
hasher.Write([]byte(label))
hash := hasher.Sum(nil)
copied := copy(buffer[bufferLen:], hash)
bufferLen += copied
}
return buffer
}
// parsePEMBundle parses a certificate bundle from top to bottom and returns
// a slice of x509 certificates. This function will error if no certificates are found.
func parsePEMBundle(bundle []byte) ([]*x509.Certificate, error) {
var certificates []*x509.Certificate
remaining := bundle
for len(remaining) != 0 {
certBlock, rem := pem.Decode(remaining)
// Thanks golang for having me do this :[
remaining = rem
if certBlock == nil {
return nil, errors.New("Could not decode certificate.")
}
cert, err := x509.ParseCertificate(certBlock.Bytes)
if err != nil {
return nil, err
}
certificates = append(certificates, cert)
}
if len(certificates) == 0 {
return nil, errors.New("No certificates were found while parsing the bundle.")
}
return certificates, nil
}
func generatePrivateKey(t keyType, keyLength int) (crypto.PrivateKey, error) {
switch t {
case eckey:
return ecdsa.GenerateKey(elliptic.P384(), rand.Reader)
case rsakey:
return rsa.GenerateKey(rand.Reader, keyLength)
}
return nil, fmt.Errorf("Invalid keytype: %d", t)
}
func generateCsr(privateKey *rsa.PrivateKey, domain string, san []string) ([]byte, error) {
template := x509.CertificateRequest{
Subject: pkix.Name{
CommonName: domain,
},
}
if len(san) > 0 {
template.DNSNames = san
}
return x509.CreateCertificateRequest(rand.Reader, &template, privateKey)
}
func pemEncode(data interface{}) []byte {
var pemBlock *pem.Block
switch key := data.(type) {
case *rsa.PrivateKey:
pemBlock = &pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(key)}
break
case derCertificateBytes:
pemBlock = &pem.Block{Type: "CERTIFICATE", Bytes: []byte(data.(derCertificateBytes))}
}
return pem.EncodeToMemory(pemBlock)
}
func pemDecode(data []byte) (*pem.Block, error) {
pemBlock, _ := pem.Decode(data)
if pemBlock == nil {
return nil, fmt.Errorf("Pem decode did not yield a valid block. Is the certificate in the right format?")
}
return pemBlock, nil
}
func pemDecodeTox509(pem []byte) (*x509.Certificate, error) {
pemBlock, err := pemDecode(pem)
if pemBlock == nil {
return nil, err
}
return x509.ParseCertificate(pemBlock.Bytes)
}
// GetPEMCertExpiration returns the "NotAfter" date of a PEM encoded certificate.
// The certificate has to be PEM encoded. Any other encodings like DER will fail.
func GetPEMCertExpiration(cert []byte) (time.Time, error) {
pemBlock, err := pemDecode(cert)
if pemBlock == nil {
return time.Time{}, err
}
return getCertExpiration(pemBlock.Bytes)
}
// getCertExpiration returns the "NotAfter" date of a DER encoded certificate.
func getCertExpiration(cert []byte) (time.Time, error) {
pCert, err := x509.ParseCertificate(cert)
if err != nil {
return time.Time{}, err
}
return pCert.NotAfter, nil
}
func generatePemCert(privKey *rsa.PrivateKey, domain string) ([]byte, error) {
derBytes, err := generateDerCert(privKey, time.Time{}, domain)
if err != nil {
return nil, err
}
return pem.EncodeToMemory(&pem.Block{Type: "CERTIFICATE", Bytes: derBytes}), nil
}
func generateDerCert(privKey *rsa.PrivateKey, expiration time.Time, domain string) ([]byte, error) {
serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128)
serialNumber, err := rand.Int(rand.Reader, serialNumberLimit)
if err != nil {
return nil, err
}
if expiration.IsZero() {
expiration = time.Now().Add(365)
}
template := x509.Certificate{
SerialNumber: serialNumber,
Subject: pkix.Name{
CommonName: "ACME Challenge TEMP",
},
NotBefore: time.Now(),
NotAfter: expiration,
KeyUsage: x509.KeyUsageKeyEncipherment,
BasicConstraintsValid: true,
DNSNames: []string{domain},
}
return x509.CreateCertificate(rand.Reader, &template, &template, &privKey.PublicKey, privKey)
}
func limitReader(rd io.ReadCloser, numBytes int64) io.ReadCloser {
return http.MaxBytesReader(nil, rd, numBytes)
}

View File

@ -0,0 +1,92 @@
package acme
import (
"bytes"
"crypto/rsa"
"testing"
"time"
)
func TestGeneratePrivateKey(t *testing.T) {
key, err := generatePrivateKey(rsakey, 32)
if err != nil {
t.Error("Error generating private key:", err)
}
if key == nil {
t.Error("Expected key to not be nil, but it was")
}
}
func TestGenerateCSR(t *testing.T) {
key, err := generatePrivateKey(rsakey, 512)
if err != nil {
t.Fatal("Error generating private key:", err)
}
csr, err := generateCsr(key.(*rsa.PrivateKey), "fizz.buzz", nil)
if err != nil {
t.Error("Error generating CSR:", err)
}
if csr == nil || len(csr) == 0 {
t.Error("Expected CSR with data, but it was nil or length 0")
}
}
func TestPEMEncode(t *testing.T) {
buf := bytes.NewBufferString("TestingRSAIsSoMuchFun")
reader := MockRandReader{b: buf}
key, err := rsa.GenerateKey(reader, 32)
if err != nil {
t.Fatal("Error generating private key:", err)
}
data := pemEncode(key)
if data == nil {
t.Fatal("Expected result to not be nil, but it was")
}
if len(data) != 127 {
t.Errorf("Expected PEM encoding to be length 127, but it was %d", len(data))
}
}
func TestPEMCertExpiration(t *testing.T) {
privKey, err := generatePrivateKey(rsakey, 2048)
if err != nil {
t.Fatal("Error generating private key:", err)
}
expiration := time.Now().Add(365)
expiration = expiration.Round(time.Second)
certBytes, err := generateDerCert(privKey.(*rsa.PrivateKey), expiration, "test.com")
if err != nil {
t.Fatal("Error generating cert:", err)
}
buf := bytes.NewBufferString("TestingRSAIsSoMuchFun")
// Some random string should return an error.
if ctime, err := GetPEMCertExpiration(buf.Bytes()); err == nil {
t.Errorf("Expected getCertExpiration to return an error for garbage string but returned %v", ctime)
}
// A DER encoded certificate should return an error.
if _, err := GetPEMCertExpiration(certBytes); err == nil {
t.Errorf("Expected getCertExpiration to return an error for DER certificates but returned none.")
}
// A PEM encoded certificate should work ok.
pemCert := pemEncode(derCertificateBytes(certBytes))
if ctime, err := GetPEMCertExpiration(pemCert); err != nil || !ctime.Equal(expiration.UTC()) {
t.Errorf("Expected getCertExpiration to return %v but returned %v. Error: %v", expiration, ctime, err)
}
}
type MockRandReader struct {
b *bytes.Buffer
}
func (r MockRandReader) Read(p []byte) (int, error) {
return r.b.Read(p)
}

View File

@ -0,0 +1 @@
package acme

View File

@ -0,0 +1,73 @@
package acme
import (
"encoding/json"
"fmt"
"net/http"
"strings"
)
const (
tosAgreementError = "Must agree to subscriber agreement before any further actions"
)
// RemoteError is the base type for all errors specific to the ACME protocol.
type RemoteError struct {
StatusCode int `json:"status,omitempty"`
Type string `json:"type"`
Detail string `json:"detail"`
}
func (e RemoteError) Error() string {
return fmt.Sprintf("acme: Error %d - %s - %s", e.StatusCode, e.Type, e.Detail)
}
// TOSError represents the error which is returned if the user needs to
// accept the TOS.
// TODO: include the new TOS url if we can somehow obtain it.
type TOSError struct {
RemoteError
}
type domainError struct {
Domain string
Error error
}
type challengeError struct {
RemoteError
records []validationRecord
}
func (c challengeError) Error() string {
var errStr string
for _, validation := range c.records {
errStr = errStr + fmt.Sprintf("\tValidation for %s:%s\n\tResolved to:\n\t\t%s\n\tUsed: %s\n\n",
validation.Hostname, validation.Port, strings.Join(validation.ResolvedAddresses, "\n\t\t"), validation.UsedAddress)
}
return fmt.Sprintf("%s\nError Detail:\n%s", c.RemoteError.Error(), errStr)
}
func handleHTTPError(resp *http.Response) error {
var errorDetail RemoteError
decoder := json.NewDecoder(resp.Body)
err := decoder.Decode(&errorDetail)
if err != nil {
return err
}
errorDetail.StatusCode = resp.StatusCode
// Check for errors we handle specifically
if errorDetail.StatusCode == http.StatusForbidden && errorDetail.Detail == tosAgreementError {
return TOSError{errorDetail}
}
return errorDetail
}
func handleChallengeError(chlng challenge) error {
return challengeError{chlng.Error, chlng.ValidationRecords}
}

View File

@ -0,0 +1,61 @@
package acme
import (
"fmt"
"net"
"net/http"
"strings"
)
type httpChallenge struct {
jws *jws
validate validateFunc
optPort string
}
func (s *httpChallenge) Solve(chlng challenge, domain string) error {
logf("[INFO][%s] acme: Trying to solve HTTP-01", domain)
// Generate the Key Authorization for the challenge
keyAuth, err := getKeyAuthorization(chlng.Token, &s.jws.privKey.PublicKey)
if err != nil {
return err
}
// Allow for CLI port override
port := ":80"
if s.optPort != "" {
port = ":" + s.optPort
}
listener, err := net.Listen("tcp", domain+port)
if err != nil {
// if the domain:port bind failed, fall back to :port bind and try that instead.
listener, err = net.Listen("tcp", port)
if err != nil {
return fmt.Errorf("Could not start HTTP server for challenge -> %v", err)
}
}
defer listener.Close()
path := "/.well-known/acme-challenge/" + chlng.Token
// The handler validates the HOST header and request type.
// For validation it then writes the token the server returned with the challenge
mux := http.NewServeMux()
mux.HandleFunc(path, func(w http.ResponseWriter, r *http.Request) {
if strings.HasPrefix(r.Host, domain) && r.Method == "GET" {
w.Header().Add("Content-Type", "text/plain")
w.Write([]byte(keyAuth))
logf("[INFO][%s] Served key authentication", domain)
} else {
logf("[INFO] Received request for domain %s with method %s", r.Host, r.Method)
w.Write([]byte("TEST"))
}
})
go http.Serve(listener, mux)
return s.validate(s.jws, domain, chlng.URI, challenge{Resource: "challenge", Type: chlng.Type, Token: chlng.Token, KeyAuthorization: keyAuth})
}

View File

@ -0,0 +1,57 @@
package acme
import (
"crypto/rsa"
"io/ioutil"
"net/http"
"strings"
"testing"
)
func TestHTTPChallenge(t *testing.T) {
privKey, _ := generatePrivateKey(rsakey, 512)
j := &jws{privKey: privKey.(*rsa.PrivateKey)}
clientChallenge := challenge{Type: "http-01", Token: "http1"}
mockValidate := func(_ *jws, _, _ string, chlng challenge) error {
uri := "http://localhost:23457/.well-known/acme-challenge/" + chlng.Token
resp, err := http.Get(uri)
if err != nil {
return err
}
defer resp.Body.Close()
if want := "text/plain"; resp.Header.Get("Content-Type") != want {
t.Errorf("Get(%q) Content-Type: got %q, want %q", uri, resp.Header.Get("Content-Type"), want)
}
body, err := ioutil.ReadAll(resp.Body)
if err != nil {
return err
}
bodyStr := string(body)
if bodyStr != chlng.KeyAuthorization {
t.Errorf("Get(%q) Body: got %q, want %q", uri, bodyStr, chlng.KeyAuthorization)
}
return nil
}
solver := &httpChallenge{jws: j, validate: mockValidate, optPort: "23457"}
if err := solver.Solve(clientChallenge, "localhost:23457"); err != nil {
t.Errorf("Solve error: got %v, want nil", err)
}
}
func TestHTTPChallengeInvalidPort(t *testing.T) {
privKey, _ := generatePrivateKey(rsakey, 128)
j := &jws{privKey: privKey.(*rsa.PrivateKey)}
clientChallenge := challenge{Type: "http-01", Token: "http2"}
solver := &httpChallenge{jws: j, validate: stubValidate, optPort: "123456"}
if err := solver.Solve(clientChallenge, "localhost:123456"); err == nil {
t.Error("Solve error: got %v, want error", err)
} else if want := "invalid port 123456"; !strings.HasSuffix(err.Error(), want) {
t.Errorf("Solve error: got %q, want suffix %q", err.Error(), want)
}
}

View File

@ -0,0 +1,93 @@
package acme
import (
"bytes"
"crypto/ecdsa"
"crypto/rsa"
"fmt"
"net/http"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/square/go-jose"
)
type jws struct {
directoryURL string
privKey *rsa.PrivateKey
nonces []string
}
func keyAsJWK(key interface{}) *jose.JsonWebKey {
switch k := key.(type) {
case *ecdsa.PublicKey:
return &jose.JsonWebKey{Key: k, Algorithm: "EC"}
case *rsa.PublicKey:
return &jose.JsonWebKey{Key: k, Algorithm: "RSA"}
default:
return nil
}
}
// Posts a JWS signed message to the specified URL
func (j *jws) post(url string, content []byte) (*http.Response, error) {
signedContent, err := j.signContent(content)
if err != nil {
return nil, err
}
resp, err := http.Post(url, "application/jose+json", bytes.NewBuffer([]byte(signedContent.FullSerialize())))
if err != nil {
return nil, err
}
j.getNonceFromResponse(resp)
return resp, err
}
func (j *jws) signContent(content []byte) (*jose.JsonWebSignature, error) {
// TODO: support other algorithms - RS512
signer, err := jose.NewSigner(jose.RS256, j.privKey)
if err != nil {
return nil, err
}
signer.SetNonceSource(j)
signed, err := signer.Sign(content)
if err != nil {
return nil, err
}
return signed, nil
}
func (j *jws) getNonceFromResponse(resp *http.Response) error {
nonce := resp.Header.Get("Replay-Nonce")
if nonce == "" {
return fmt.Errorf("Server did not respond with a proper nonce header.")
}
j.nonces = append(j.nonces, nonce)
return nil
}
func (j *jws) getNonce() error {
resp, err := http.Head(j.directoryURL)
if err != nil {
return err
}
return j.getNonceFromResponse(resp)
}
func (j *jws) Nonce() (string, error) {
nonce := ""
if len(j.nonces) == 0 {
err := j.getNonce()
if err != nil {
return nonce, err
}
}
nonce, j.nonces = j.nonces[len(j.nonces)-1], j.nonces[:len(j.nonces)-1]
return nonce, nil
}

View File

@ -0,0 +1,118 @@
package acme
import (
"time"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/square/go-jose"
)
type directory struct {
NewAuthzURL string `json:"new-authz"`
NewCertURL string `json:"new-cert"`
NewRegURL string `json:"new-reg"`
RevokeCertURL string `json:"revoke-cert"`
}
type recoveryKeyMessage struct {
Length int `json:"length,omitempty"`
Client jose.JsonWebKey `json:"client,omitempty"`
Server jose.JsonWebKey `json:"client,omitempty"`
}
type registrationMessage struct {
Resource string `json:"resource"`
Contact []string `json:"contact"`
// RecoveryKey recoveryKeyMessage `json:"recoveryKey,omitempty"`
}
// Registration is returned by the ACME server after the registration
// The client implementation should save this registration somewhere.
type Registration struct {
Resource string `json:"resource,omitempty"`
ID int `json:"id"`
Key struct {
Kty string `json:"kty"`
N string `json:"n"`
E string `json:"e"`
} `json:"key"`
Contact []string `json:"contact"`
Agreement string `json:"agreement,omitempty"`
Authorizations string `json:"authorizations,omitempty"`
Certificates string `json:"certificates,omitempty"`
// RecoveryKey recoveryKeyMessage `json:"recoveryKey,omitempty"`
}
// RegistrationResource represents all important informations about a registration
// of which the client needs to keep track itself.
type RegistrationResource struct {
Body Registration `json:"body,omitempty"`
URI string `json:"uri,omitempty"`
NewAuthzURL string `json:"new_authzr_uri,omitempty"`
TosURL string `json:"terms_of_service,omitempty"`
}
type authorizationResource struct {
Body authorization
Domain string
NewCertURL string
AuthURL string
}
type authorization struct {
Resource string `json:"resource,omitempty"`
Identifier identifier `json:"identifier"`
Status string `json:"status,omitempty"`
Expires time.Time `json:"expires,omitempty"`
Challenges []challenge `json:"challenges,omitempty"`
Combinations [][]int `json:"combinations,omitempty"`
}
type identifier struct {
Type string `json:"type"`
Value string `json:"value"`
}
type validationRecord struct {
URI string `json:"url,omitempty"`
Hostname string `json:"hostname,omitempty"`
Port string `json:"port,omitempty"`
ResolvedAddresses []string `json:"addressesResolved,omitempty"`
UsedAddress string `json:"addressUsed,omitempty"`
}
type challenge struct {
Resource string `json:"resource,omitempty"`
Type string `json:"type,omitempty"`
Status string `json:"status,omitempty"`
URI string `json:"uri,omitempty"`
Token string `json:"token,omitempty"`
KeyAuthorization string `json:"keyAuthorization,omitempty"`
TLS bool `json:"tls,omitempty"`
Iterations int `json:"n,omitempty"`
Error RemoteError `json:"error,omitempty"`
ValidationRecords []validationRecord `json:"validationRecord,omitempty"`
}
type csrMessage struct {
Resource string `json:"resource,omitempty"`
Csr string `json:"csr"`
Authorizations []string `json:"authorizations"`
}
type revokeCertMessage struct {
Resource string `json:"resource"`
Certificate string `json:"certificate"`
}
// CertificateResource represents a CA issued certificate.
// PrivateKey and Certificate are both already PEM encoded
// and can be directly written to disk. Certificate may
// be a certificate bundle, depending on the options supplied
// to create it.
type CertificateResource struct {
Domain string `json:"domain"`
CertURL string `json:"certUrl"`
CertStableURL string `json:"certStableUrl"`
PrivateKey []byte `json:"-"`
Certificate []byte `json:"-"`
}

View File

@ -0,0 +1 @@
package acme

View File

@ -0,0 +1,80 @@
package acme
import (
"crypto/rsa"
"crypto/sha256"
"crypto/tls"
"encoding/hex"
"fmt"
"net/http"
)
type tlsSNIChallenge struct {
jws *jws
validate validateFunc
optPort string
}
func (t *tlsSNIChallenge) Solve(chlng challenge, domain string) error {
// FIXME: https://github.com/ietf-wg-acme/acme/pull/22
// Currently we implement this challenge to track boulder, not the current spec!
logf("[INFO][%s] acme: Trying to solve TLS-SNI-01", domain)
// Generate the Key Authorization for the challenge
keyAuth, err := getKeyAuthorization(chlng.Token, &t.jws.privKey.PublicKey)
if err != nil {
return err
}
cert, err := t.generateCertificate(keyAuth)
if err != nil {
return err
}
// Allow for CLI port override
port := ":443"
if t.optPort != "" {
port = ":" + t.optPort
}
tlsConf := new(tls.Config)
tlsConf.Certificates = []tls.Certificate{cert}
listener, err := tls.Listen("tcp", port, tlsConf)
if err != nil {
return fmt.Errorf("Could not start HTTPS server for challenge -> %v", err)
}
defer listener.Close()
go http.Serve(listener, nil)
return t.validate(t.jws, domain, chlng.URI, challenge{Resource: "challenge", Type: chlng.Type, Token: chlng.Token, KeyAuthorization: keyAuth})
}
func (t *tlsSNIChallenge) generateCertificate(keyAuth string) (tls.Certificate, error) {
zBytes := sha256.Sum256([]byte(keyAuth))
z := hex.EncodeToString(zBytes[:sha256.Size])
// generate a new RSA key for the certificates
tempPrivKey, err := generatePrivateKey(rsakey, 2048)
if err != nil {
return tls.Certificate{}, err
}
rsaPrivKey := tempPrivKey.(*rsa.PrivateKey)
rsaPrivPEM := pemEncode(rsaPrivKey)
domain := fmt.Sprintf("%s.%s.acme.invalid", z[:32], z[32:])
tempCertPEM, err := generatePemCert(rsaPrivKey, domain)
if err != nil {
return tls.Certificate{}, err
}
certificate, err := tls.X509KeyPair(tempCertPEM, rsaPrivPEM)
if err != nil {
return tls.Certificate{}, err
}
return certificate, nil
}

View File

@ -0,0 +1,64 @@
package acme
import (
"crypto/rsa"
"crypto/sha256"
"crypto/tls"
"encoding/hex"
"fmt"
"strings"
"testing"
)
func TestTLSSNIChallenge(t *testing.T) {
privKey, _ := generatePrivateKey(rsakey, 512)
j := &jws{privKey: privKey.(*rsa.PrivateKey)}
clientChallenge := challenge{Type: "tls-sni-01", Token: "tlssni1"}
mockValidate := func(_ *jws, _, _ string, chlng challenge) error {
conn, err := tls.Dial("tcp", "localhost:23457", &tls.Config{
InsecureSkipVerify: true,
})
if err != nil {
t.Errorf("Expected to connect to challenge server without an error. %s", err.Error())
}
// Expect the server to only return one certificate
connState := conn.ConnectionState()
if count := len(connState.PeerCertificates); count != 1 {
t.Errorf("Expected the challenge server to return exactly one certificate but got %d", count)
}
remoteCert := connState.PeerCertificates[0]
if count := len(remoteCert.DNSNames); count != 1 {
t.Errorf("Expected the challenge certificate to have exactly one DNSNames entry but had %d", count)
}
zBytes := sha256.Sum256([]byte(chlng.KeyAuthorization))
z := hex.EncodeToString(zBytes[:sha256.Size])
domain := fmt.Sprintf("%s.%s.acme.invalid", z[:32], z[32:])
if remoteCert.DNSNames[0] != domain {
t.Errorf("Expected the challenge certificate DNSName to match %s but was %s", domain, remoteCert.DNSNames[0])
}
return nil
}
solver := &tlsSNIChallenge{jws: j, validate: mockValidate, optPort: "23457"}
if err := solver.Solve(clientChallenge, "localhost:23457"); err != nil {
t.Errorf("Solve error: got %v, want nil", err)
}
}
func TestTLSSNIChallengeInvalidPort(t *testing.T) {
privKey, _ := generatePrivateKey(rsakey, 128)
j := &jws{privKey: privKey.(*rsa.PrivateKey)}
clientChallenge := challenge{Type: "tls-sni-01", Token: "tlssni2"}
solver := &tlsSNIChallenge{jws: j, validate: stubValidate, optPort: "123456"}
if err := solver.Solve(clientChallenge, "localhost:123456"); err == nil {
t.Error("Solve error: got %v, want error", err)
} else if want := "invalid port 123456"; !strings.HasSuffix(err.Error(), want) {
t.Errorf("Solve error: got %q, want suffix %q", err.Error(), want)
}
}

573
Godeps/_workspace/src/golang.org/x/crypto/ocsp/ocsp.go generated vendored Normal file
View File

@ -0,0 +1,573 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ocsp parses OCSP responses as specified in RFC 2560. OCSP responses
// are signed messages attesting to the validity of a certificate for a small
// period of time. This is used to manage revocation for X.509 certificates.
package ocsp
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/sha1"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"errors"
"math/big"
"time"
)
var idPKIXOCSPBasic = asn1.ObjectIdentifier([]int{1, 3, 6, 1, 5, 5, 7, 48, 1, 1})
// These are internal structures that reflect the ASN.1 structure of an OCSP
// response. See RFC 2560, section 4.2.
const (
ocspSuccess = 0
ocspMalformed = 1
ocspInternalError = 2
ocspTryLater = 3
ocspSigRequired = 4
ocspUnauthorized = 5
)
type certID struct {
HashAlgorithm pkix.AlgorithmIdentifier
NameHash []byte
IssuerKeyHash []byte
SerialNumber *big.Int
}
// https://tools.ietf.org/html/rfc2560#section-4.1.1
type ocspRequest struct {
TBSRequest tbsRequest
}
type tbsRequest struct {
Version int `asn1:"explicit,tag:0,default:0"`
RequestorName pkix.RDNSequence `asn1:"explicit,tag:1,optional"`
RequestList []request
}
type request struct {
Cert certID
}
type responseASN1 struct {
Status asn1.Enumerated
Response responseBytes `asn1:"explicit,tag:0"`
}
type responseBytes struct {
ResponseType asn1.ObjectIdentifier
Response []byte
}
type basicResponse struct {
TBSResponseData responseData
SignatureAlgorithm pkix.AlgorithmIdentifier
Signature asn1.BitString
Certificates []asn1.RawValue `asn1:"explicit,tag:0,optional"`
}
type responseData struct {
Raw asn1.RawContent
Version int `asn1:"optional,default:1,explicit,tag:0"`
ResponderName pkix.RDNSequence `asn1:"optional,explicit,tag:1"`
KeyHash []byte `asn1:"optional,explicit,tag:2"`
ProducedAt time.Time
Responses []singleResponse
}
type singleResponse struct {
CertID certID
Good asn1.Flag `asn1:"explicit,tag:0,optional"`
Revoked revokedInfo `asn1:"explicit,tag:1,optional"`
Unknown asn1.Flag `asn1:"explicit,tag:2,optional"`
ThisUpdate time.Time
NextUpdate time.Time `asn1:"explicit,tag:0,optional"`
}
type revokedInfo struct {
RevocationTime time.Time
Reason int `asn1:"explicit,tag:0,optional"`
}
var (
oidSignatureMD2WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2}
oidSignatureMD5WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4}
oidSignatureSHA1WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5}
oidSignatureSHA256WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11}
oidSignatureSHA384WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12}
oidSignatureSHA512WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13}
oidSignatureDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3}
oidSignatureDSAWithSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 4, 3, 2}
oidSignatureECDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 1}
oidSignatureECDSAWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 2}
oidSignatureECDSAWithSHA384 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 3}
oidSignatureECDSAWithSHA512 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 4}
)
var hashOIDs = map[crypto.Hash]asn1.ObjectIdentifier{
crypto.SHA1: asn1.ObjectIdentifier([]int{1, 3, 14, 3, 2, 26}),
crypto.SHA256: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 1}),
crypto.SHA384: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 2}),
crypto.SHA512: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 3}),
}
// TODO(rlb): This is also from crypto/x509, so same comment as AGL's below
var signatureAlgorithmDetails = []struct {
algo x509.SignatureAlgorithm
oid asn1.ObjectIdentifier
pubKeyAlgo x509.PublicKeyAlgorithm
hash crypto.Hash
}{
{x509.MD2WithRSA, oidSignatureMD2WithRSA, x509.RSA, crypto.Hash(0) /* no value for MD2 */},
{x509.MD5WithRSA, oidSignatureMD5WithRSA, x509.RSA, crypto.MD5},
{x509.SHA1WithRSA, oidSignatureSHA1WithRSA, x509.RSA, crypto.SHA1},
{x509.SHA256WithRSA, oidSignatureSHA256WithRSA, x509.RSA, crypto.SHA256},
{x509.SHA384WithRSA, oidSignatureSHA384WithRSA, x509.RSA, crypto.SHA384},
{x509.SHA512WithRSA, oidSignatureSHA512WithRSA, x509.RSA, crypto.SHA512},
{x509.DSAWithSHA1, oidSignatureDSAWithSHA1, x509.DSA, crypto.SHA1},
{x509.DSAWithSHA256, oidSignatureDSAWithSHA256, x509.DSA, crypto.SHA256},
{x509.ECDSAWithSHA1, oidSignatureECDSAWithSHA1, x509.ECDSA, crypto.SHA1},
{x509.ECDSAWithSHA256, oidSignatureECDSAWithSHA256, x509.ECDSA, crypto.SHA256},
{x509.ECDSAWithSHA384, oidSignatureECDSAWithSHA384, x509.ECDSA, crypto.SHA384},
{x509.ECDSAWithSHA512, oidSignatureECDSAWithSHA512, x509.ECDSA, crypto.SHA512},
}
// TODO(rlb): This is also from crypto/x509, so same comment as AGL's below
func signingParamsForPublicKey(pub interface{}, requestedSigAlgo x509.SignatureAlgorithm) (hashFunc crypto.Hash, sigAlgo pkix.AlgorithmIdentifier, err error) {
var pubType x509.PublicKeyAlgorithm
switch pub := pub.(type) {
case *rsa.PublicKey:
pubType = x509.RSA
hashFunc = crypto.SHA256
sigAlgo.Algorithm = oidSignatureSHA256WithRSA
sigAlgo.Parameters = asn1.RawValue{
Tag: 5,
}
case *ecdsa.PublicKey:
pubType = x509.ECDSA
switch pub.Curve {
case elliptic.P224(), elliptic.P256():
hashFunc = crypto.SHA256
sigAlgo.Algorithm = oidSignatureECDSAWithSHA256
case elliptic.P384():
hashFunc = crypto.SHA384
sigAlgo.Algorithm = oidSignatureECDSAWithSHA384
case elliptic.P521():
hashFunc = crypto.SHA512
sigAlgo.Algorithm = oidSignatureECDSAWithSHA512
default:
err = errors.New("x509: unknown elliptic curve")
}
default:
err = errors.New("x509: only RSA and ECDSA keys supported")
}
if err != nil {
return
}
if requestedSigAlgo == 0 {
return
}
found := false
for _, details := range signatureAlgorithmDetails {
if details.algo == requestedSigAlgo {
if details.pubKeyAlgo != pubType {
err = errors.New("x509: requested SignatureAlgorithm does not match private key type")
return
}
sigAlgo.Algorithm, hashFunc = details.oid, details.hash
if hashFunc == 0 {
err = errors.New("x509: cannot sign with hash function requested")
return
}
found = true
break
}
}
if !found {
err = errors.New("x509: unknown SignatureAlgorithm")
}
return
}
// TODO(agl): this is taken from crypto/x509 and so should probably be exported
// from crypto/x509 or crypto/x509/pkix.
func getSignatureAlgorithmFromOID(oid asn1.ObjectIdentifier) x509.SignatureAlgorithm {
for _, details := range signatureAlgorithmDetails {
if oid.Equal(details.oid) {
return details.algo
}
}
return x509.UnknownSignatureAlgorithm
}
// TODO(rlb): This is not taken from crypto/x509, but it's of the same general form.
func getHashAlgorithmFromOID(target asn1.ObjectIdentifier) crypto.Hash {
for hash, oid := range hashOIDs {
if oid.Equal(target) {
return hash
}
}
return crypto.Hash(0)
}
// This is the exposed reflection of the internal OCSP structures.
const (
// Good means that the certificate is valid.
Good = iota
// Revoked means that the certificate has been deliberately revoked.
Revoked = iota
// Unknown means that the OCSP responder doesn't know about the certificate.
Unknown = iota
// ServerFailed means that the OCSP responder failed to process the request.
ServerFailed = iota
)
// Request represents an OCSP request. See RFC 2560.
type Request struct {
HashAlgorithm crypto.Hash
IssuerNameHash []byte
IssuerKeyHash []byte
SerialNumber *big.Int
}
// Response represents an OCSP response. See RFC 2560.
type Response struct {
// Status is one of {Good, Revoked, Unknown, ServerFailed}
Status int
SerialNumber *big.Int
ProducedAt, ThisUpdate, NextUpdate, RevokedAt time.Time
RevocationReason int
Certificate *x509.Certificate
// TBSResponseData contains the raw bytes of the signed response. If
// Certificate is nil then this can be used to verify Signature.
TBSResponseData []byte
Signature []byte
SignatureAlgorithm x509.SignatureAlgorithm
}
// CheckSignatureFrom checks that the signature in resp is a valid signature
// from issuer. This should only be used if resp.Certificate is nil. Otherwise,
// the OCSP response contained an intermediate certificate that created the
// signature. That signature is checked by ParseResponse and only
// resp.Certificate remains to be validated.
func (resp *Response) CheckSignatureFrom(issuer *x509.Certificate) error {
return issuer.CheckSignature(resp.SignatureAlgorithm, resp.TBSResponseData, resp.Signature)
}
// ParseError results from an invalid OCSP response.
type ParseError string
func (p ParseError) Error() string {
return string(p)
}
// ParseRequest parses an OCSP request in DER form. It only supports
// requests for a single certificate. Signed requests are not supported.
// If a request includes a signature, it will result in a ParseError.
func ParseRequest(bytes []byte) (*Request, error) {
var req ocspRequest
rest, err := asn1.Unmarshal(bytes, &req)
if err != nil {
return nil, err
}
if len(rest) > 0 {
return nil, ParseError("trailing data in OCSP request")
}
if len(req.TBSRequest.RequestList) == 0 {
return nil, ParseError("OCSP request contains no request body")
}
innerRequest := req.TBSRequest.RequestList[0]
hashFunc := getHashAlgorithmFromOID(innerRequest.Cert.HashAlgorithm.Algorithm)
if hashFunc == crypto.Hash(0) {
return nil, ParseError("OCSP request uses unknown hash function")
}
return &Request{
HashAlgorithm: hashFunc,
IssuerNameHash: innerRequest.Cert.NameHash,
IssuerKeyHash: innerRequest.Cert.IssuerKeyHash,
SerialNumber: innerRequest.Cert.SerialNumber,
}, nil
}
// ParseResponse parses an OCSP response in DER form. It only supports
// responses for a single certificate. If the response contains a certificate
// then the signature over the response is checked. If issuer is not nil then
// it will be used to validate the signature or embedded certificate. Invalid
// signatures or parse failures will result in a ParseError.
func ParseResponse(bytes []byte, issuer *x509.Certificate) (*Response, error) {
var resp responseASN1
rest, err := asn1.Unmarshal(bytes, &resp)
if err != nil {
return nil, err
}
if len(rest) > 0 {
return nil, ParseError("trailing data in OCSP response")
}
ret := new(Response)
if resp.Status != ocspSuccess {
ret.Status = ServerFailed
return ret, nil
}
if !resp.Response.ResponseType.Equal(idPKIXOCSPBasic) {
return nil, ParseError("bad OCSP response type")
}
var basicResp basicResponse
rest, err = asn1.Unmarshal(resp.Response.Response, &basicResp)
if err != nil {
return nil, err
}
if len(basicResp.Certificates) > 1 {
return nil, ParseError("OCSP response contains bad number of certificates")
}
if len(basicResp.TBSResponseData.Responses) != 1 {
return nil, ParseError("OCSP response contains bad number of responses")
}
ret.TBSResponseData = basicResp.TBSResponseData.Raw
ret.Signature = basicResp.Signature.RightAlign()
ret.SignatureAlgorithm = getSignatureAlgorithmFromOID(basicResp.SignatureAlgorithm.Algorithm)
if len(basicResp.Certificates) > 0 {
ret.Certificate, err = x509.ParseCertificate(basicResp.Certificates[0].FullBytes)
if err != nil {
return nil, err
}
if err := ret.CheckSignatureFrom(ret.Certificate); err != nil {
return nil, ParseError("bad OCSP signature")
}
if issuer != nil {
if err := issuer.CheckSignature(ret.Certificate.SignatureAlgorithm, ret.Certificate.RawTBSCertificate, ret.Certificate.Signature); err != nil {
return nil, ParseError("bad signature on embedded certificate")
}
}
} else if issuer != nil {
if err := ret.CheckSignatureFrom(issuer); err != nil {
return nil, ParseError("bad OCSP signature")
}
}
r := basicResp.TBSResponseData.Responses[0]
ret.SerialNumber = r.CertID.SerialNumber
switch {
case bool(r.Good):
ret.Status = Good
case bool(r.Unknown):
ret.Status = Unknown
default:
ret.Status = Revoked
ret.RevokedAt = r.Revoked.RevocationTime
ret.RevocationReason = r.Revoked.Reason
}
ret.ProducedAt = basicResp.TBSResponseData.ProducedAt
ret.ThisUpdate = r.ThisUpdate
ret.NextUpdate = r.NextUpdate
return ret, nil
}
// RequestOptions contains options for constructing OCSP requests.
type RequestOptions struct {
// Hash contains the hash function that should be used when
// constructing the OCSP request. If zero, SHA-1 will be used.
Hash crypto.Hash
}
func (opts *RequestOptions) hash() crypto.Hash {
if opts == nil || opts.Hash == 0 {
// SHA-1 is nearly universally used in OCSP.
return crypto.SHA1
}
return opts.Hash
}
// CreateRequest returns a DER-encoded, OCSP request for the status of cert. If
// opts is nil then sensible defaults are used.
func CreateRequest(cert, issuer *x509.Certificate, opts *RequestOptions) ([]byte, error) {
hashFunc := opts.hash()
// OCSP seems to be the only place where these raw hash identifiers are
// used. I took the following from
// http://msdn.microsoft.com/en-us/library/ff635603.aspx
var hashOID asn1.ObjectIdentifier
hashOID, ok := hashOIDs[hashFunc]
if !ok {
return nil, x509.ErrUnsupportedAlgorithm
}
if !hashFunc.Available() {
return nil, x509.ErrUnsupportedAlgorithm
}
h := opts.hash().New()
var publicKeyInfo struct {
Algorithm pkix.AlgorithmIdentifier
PublicKey asn1.BitString
}
if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil {
return nil, err
}
h.Write(publicKeyInfo.PublicKey.RightAlign())
issuerKeyHash := h.Sum(nil)
h.Reset()
h.Write(issuer.RawSubject)
issuerNameHash := h.Sum(nil)
return asn1.Marshal(ocspRequest{
tbsRequest{
Version: 0,
RequestList: []request{
{
Cert: certID{
pkix.AlgorithmIdentifier{
Algorithm: hashOID,
Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */},
},
issuerNameHash,
issuerKeyHash,
cert.SerialNumber,
},
},
},
},
})
}
// CreateResponse returns a DER-encoded OCSP response with the specified contents.
// The fields in the response are populated as follows:
//
// The responder cert is used to populate the ResponderName field, and the certificate
// itself is provided alongside the OCSP response signature.
//
// The issuer cert is used to puplate the IssuerNameHash and IssuerKeyHash fields.
// (SHA-1 is used for the hash function; this is not configurable.)
//
// The template is used to populate the SerialNumber, RevocationStatus, RevokedAt,
// RevocationReason, ThisUpdate, and NextUpdate fields.
//
// The ProducedAt date is automatically set to the current date, to the nearest minute.
func CreateResponse(issuer, responderCert *x509.Certificate, template Response, priv crypto.Signer) ([]byte, error) {
var publicKeyInfo struct {
Algorithm pkix.AlgorithmIdentifier
PublicKey asn1.BitString
}
if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil {
return nil, err
}
h := sha1.New()
h.Write(publicKeyInfo.PublicKey.RightAlign())
issuerKeyHash := h.Sum(nil)
h.Reset()
h.Write(issuer.RawSubject)
issuerNameHash := h.Sum(nil)
innerResponse := singleResponse{
CertID: certID{
HashAlgorithm: pkix.AlgorithmIdentifier{
Algorithm: hashOIDs[crypto.SHA1],
Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */},
},
NameHash: issuerNameHash,
IssuerKeyHash: issuerKeyHash,
SerialNumber: template.SerialNumber,
},
ThisUpdate: template.ThisUpdate.UTC(),
NextUpdate: template.NextUpdate.UTC(),
}
switch template.Status {
case Good:
innerResponse.Good = true
case Unknown:
innerResponse.Unknown = true
case Revoked:
innerResponse.Revoked = revokedInfo{
RevocationTime: template.RevokedAt,
Reason: template.RevocationReason,
}
}
tbsResponseData := responseData{
ResponderName: responderCert.Subject.ToRDNSequence(),
ProducedAt: time.Now().Truncate(time.Minute),
Responses: []singleResponse{innerResponse},
}
tbsResponseDataDER, err := asn1.Marshal(tbsResponseData)
if err != nil {
return nil, err
}
hashFunc, signatureAlgorithm, err := signingParamsForPublicKey(priv.Public(), template.SignatureAlgorithm)
if err != nil {
return nil, err
}
responseHash := hashFunc.New()
responseHash.Write(tbsResponseDataDER)
signature, err := priv.Sign(rand.Reader, responseHash.Sum(nil), hashFunc)
if err != nil {
return nil, err
}
response := basicResponse{
TBSResponseData: tbsResponseData,
SignatureAlgorithm: signatureAlgorithm,
Signature: asn1.BitString{
Bytes: signature,
BitLength: 8 * len(signature),
},
}
if template.Certificate != nil {
response.Certificates = []asn1.RawValue{
asn1.RawValue{FullBytes: template.Certificate.Raw},
}
}
responseDER, err := asn1.Marshal(response)
if err != nil {
return nil, err
}
return asn1.Marshal(responseASN1{
Status: ocspSuccess,
Response: responseBytes{
ResponseType: idPKIXOCSPBasic,
Response: responseDER,
},
})
}

View File

@ -0,0 +1,453 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ocsp
import (
"bytes"
"crypto"
"crypto/sha1"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"encoding/hex"
"math/big"
"reflect"
"testing"
"time"
)
func TestOCSPDecode(t *testing.T) {
responseBytes, _ := hex.DecodeString(ocspResponseHex)
resp, err := ParseResponse(responseBytes, nil)
if err != nil {
t.Error(err)
}
expected := Response{
Status: 0,
SerialNumber: big.NewInt(0x1d0fa),
RevocationReason: 0,
ThisUpdate: time.Date(2010, 7, 7, 15, 1, 5, 0, time.UTC),
NextUpdate: time.Date(2010, 7, 7, 18, 35, 17, 0, time.UTC),
}
if !reflect.DeepEqual(resp.ThisUpdate, expected.ThisUpdate) {
t.Errorf("resp.ThisUpdate: got %d, want %d", resp.ThisUpdate, expected.ThisUpdate)
}
if !reflect.DeepEqual(resp.NextUpdate, expected.NextUpdate) {
t.Errorf("resp.NextUpdate: got %d, want %d", resp.NextUpdate, expected.NextUpdate)
}
if resp.Status != expected.Status {
t.Errorf("resp.Status: got %d, want %d", resp.Status, expected.Status)
}
if resp.SerialNumber.Cmp(expected.SerialNumber) != 0 {
t.Errorf("resp.SerialNumber: got %x, want %x", resp.SerialNumber, expected.SerialNumber)
}
if resp.RevocationReason != expected.RevocationReason {
t.Errorf("resp.RevocationReason: got %d, want %d", resp.RevocationReason, expected.RevocationReason)
}
}
func TestOCSPDecodeWithoutCert(t *testing.T) {
responseBytes, _ := hex.DecodeString(ocspResponseWithoutCertHex)
_, err := ParseResponse(responseBytes, nil)
if err != nil {
t.Error(err)
}
}
func TestOCSPSignature(t *testing.T) {
issuerCert, _ := hex.DecodeString(startComHex)
issuer, err := x509.ParseCertificate(issuerCert)
if err != nil {
t.Fatal(err)
}
response, _ := hex.DecodeString(ocspResponseHex)
if _, err := ParseResponse(response, issuer); err != nil {
t.Error(err)
}
}
func TestOCSPRequest(t *testing.T) {
leafCert, _ := hex.DecodeString(leafCertHex)
cert, err := x509.ParseCertificate(leafCert)
if err != nil {
t.Fatal(err)
}
issuerCert, _ := hex.DecodeString(issuerCertHex)
issuer, err := x509.ParseCertificate(issuerCert)
if err != nil {
t.Fatal(err)
}
request, err := CreateRequest(cert, issuer, nil)
if err != nil {
t.Fatal(err)
}
expectedBytes, _ := hex.DecodeString(ocspRequestHex)
if !bytes.Equal(request, expectedBytes) {
t.Errorf("request: got %x, wanted %x", request, expectedBytes)
}
decodedRequest, err := ParseRequest(expectedBytes)
if err != nil {
t.Fatal(err)
}
if decodedRequest.HashAlgorithm != crypto.SHA1 {
t.Errorf("request.HashAlgorithm: got %v, want %v", decodedRequest.HashAlgorithm, crypto.SHA1)
}
var publicKeyInfo struct {
Algorithm pkix.AlgorithmIdentifier
PublicKey asn1.BitString
}
_, err = asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo)
if err != nil {
t.Fatal(err)
}
h := sha1.New()
h.Write(publicKeyInfo.PublicKey.RightAlign())
issuerKeyHash := h.Sum(nil)
h.Reset()
h.Write(issuer.RawSubject)
issuerNameHash := h.Sum(nil)
if got := decodedRequest.IssuerKeyHash; !bytes.Equal(got, issuerKeyHash) {
t.Errorf("request.IssuerKeyHash: got %x, want %x", got, issuerKeyHash)
}
if got := decodedRequest.IssuerNameHash; !bytes.Equal(got, issuerNameHash) {
t.Errorf("request.IssuerKeyHash: got %x, want %x", got, issuerNameHash)
}
if got := decodedRequest.SerialNumber; got.Cmp(cert.SerialNumber) != 0 {
t.Errorf("request.SerialNumber: got %x, want %x", got, cert.SerialNumber)
}
}
func TestOCSPResponse(t *testing.T) {
leafCert, _ := hex.DecodeString(leafCertHex)
leaf, err := x509.ParseCertificate(leafCert)
if err != nil {
t.Fatal(err)
}
issuerCert, _ := hex.DecodeString(issuerCertHex)
issuer, err := x509.ParseCertificate(issuerCert)
if err != nil {
t.Fatal(err)
}
responderCert, _ := hex.DecodeString(responderCertHex)
responder, err := x509.ParseCertificate(responderCert)
if err != nil {
t.Fatal(err)
}
responderPrivateKeyDER, _ := hex.DecodeString(responderPrivateKeyHex)
responderPrivateKey, err := x509.ParsePKCS1PrivateKey(responderPrivateKeyDER)
if err != nil {
t.Fatal(err)
}
producedAt := time.Now().Truncate(time.Minute)
thisUpdate := time.Date(2010, 7, 7, 15, 1, 5, 0, time.UTC)
nextUpdate := time.Date(2010, 7, 7, 18, 35, 17, 0, time.UTC)
template := Response{
Status: Revoked,
SerialNumber: leaf.SerialNumber,
ThisUpdate: thisUpdate,
NextUpdate: nextUpdate,
RevokedAt: thisUpdate,
RevocationReason: 1, // keyCompromise
Certificate: responder,
}
responseBytes, err := CreateResponse(issuer, responder, template, responderPrivateKey)
if err != nil {
t.Fatal(err)
}
resp, err := ParseResponse(responseBytes, nil)
if err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(resp.ThisUpdate, template.ThisUpdate) {
t.Errorf("resp.ThisUpdate: got %d, want %d", resp.ThisUpdate, template.ThisUpdate)
}
if !reflect.DeepEqual(resp.NextUpdate, template.NextUpdate) {
t.Errorf("resp.NextUpdate: got %d, want %d", resp.NextUpdate, template.NextUpdate)
}
if !reflect.DeepEqual(resp.RevokedAt, template.RevokedAt) {
t.Errorf("resp.NextUpdate: got %d, want %d", resp.NextUpdate, template.NextUpdate)
}
if !reflect.DeepEqual(resp.ProducedAt, producedAt) {
t.Errorf("resp.NextUpdate: got %d, want %d", resp.NextUpdate, template.NextUpdate)
}
if resp.Status != template.Status {
t.Errorf("resp.Status: got %d, want %d", resp.Status, template.Status)
}
if resp.SerialNumber.Cmp(template.SerialNumber) != 0 {
t.Errorf("resp.SerialNumber: got %x, want %x", resp.SerialNumber, template.SerialNumber)
}
if resp.RevocationReason != template.RevocationReason {
t.Errorf("resp.RevocationReason: got %d, want %d", resp.RevocationReason, template.RevocationReason)
}
}
// This OCSP response was taken from Thawte's public OCSP responder.
// To recreate:
// $ openssl s_client -tls1 -showcerts -servername www.google.com -connect www.google.com:443
// Copy and paste the first certificate into /tmp/cert.crt and the second into
// /tmp/intermediate.crt
// $ openssl ocsp -issuer /tmp/intermediate.crt -cert /tmp/cert.crt -url http://ocsp.thawte.com -resp_text -respout /tmp/ocsp.der
// Then hex encode the result:
// $ python -c 'print file("/tmp/ocsp.der", "r").read().encode("hex")'
const ocspResponseHex = "308206bc0a0100a08206b5308206b106092b0601050507300101048206a23082069e3081" +
"c9a14e304c310b300906035504061302494c31163014060355040a130d5374617274436f" +
"6d204c74642e312530230603550403131c5374617274436f6d20436c6173732031204f43" +
"5350205369676e6572180f32303130303730373137333531375a30663064303c30090605" +
"2b0e03021a050004146568874f40750f016a3475625e1f5c93e5a26d580414eb4234d098" +
"b0ab9ff41b6b08f7cc642eef0e2c45020301d0fa8000180f323031303037303731353031" +
"30355aa011180f32303130303730373138333531375a300d06092a864886f70d01010505" +
"000382010100ab557ff070d1d7cebbb5f0ec91a15c3fed22eb2e1b8244f1b84545f013a4" +
"fb46214c5e3fbfbebb8a56acc2b9db19f68fd3c3201046b3824d5ba689f99864328710cb" +
"467195eb37d84f539e49f859316b32964dc3e47e36814ce94d6c56dd02733b1d0802f7ff" +
"4eebdbbd2927dcf580f16cbc290f91e81b53cb365e7223f1d6e20a88ea064104875e0145" +
"672b20fc14829d51ca122f5f5d77d3ad6c83889c55c7dc43680ba2fe3cef8b05dbcabdc0" +
"d3e09aaf9725597f8c858c2fa38c0d6aed2e6318194420dd1a1137445d13e1c97ab47896" +
"17a4e08925f46f867b72e3a4dc1f08cb870b2b0717f7207faa0ac512e628a029aba7457a" +
"e63dcf3281e2162d9349a08204ba308204b6308204b23082039aa003020102020101300d" +
"06092a864886f70d010105050030818c310b300906035504061302494c31163014060355" +
"040a130d5374617274436f6d204c74642e312b3029060355040b13225365637572652044" +
"69676974616c204365727469666963617465205369676e696e6731383036060355040313" +
"2f5374617274436f6d20436c6173732031205072696d61727920496e7465726d65646961" +
"746520536572766572204341301e170d3037313032353030323330365a170d3132313032" +
"333030323330365a304c310b300906035504061302494c31163014060355040a130d5374" +
"617274436f6d204c74642e312530230603550403131c5374617274436f6d20436c617373" +
"2031204f435350205369676e657230820122300d06092a864886f70d0101010500038201" +
"0f003082010a0282010100b9561b4c45318717178084e96e178df2255e18ed8d8ecc7c2b" +
"7b51a6c1c2e6bf0aa3603066f132fe10ae97b50e99fa24b83fc53dd2777496387d14e1c3" +
"a9b6a4933e2ac12413d085570a95b8147414a0bc007c7bcf222446ef7f1a156d7ea1c577" +
"fc5f0facdfd42eb0f5974990cb2f5cefebceef4d1bdc7ae5c1075c5a99a93171f2b0845b" +
"4ff0864e973fcfe32f9d7511ff87a3e943410c90a4493a306b6944359340a9ca96f02b66" +
"ce67f028df2980a6aaee8d5d5d452b8b0eb93f923cc1e23fcccbdbe7ffcb114d08fa7a6a" +
"3c404f825d1a0e715935cf623a8c7b59670014ed0622f6089a9447a7a19010f7fe58f841" +
"29a2765ea367824d1c3bb2fda308530203010001a382015c30820158300c0603551d1301" +
"01ff04023000300b0603551d0f0404030203a8301e0603551d250417301506082b060105" +
"0507030906092b0601050507300105301d0603551d0e0416041445e0a36695414c5dd449" +
"bc00e33cdcdbd2343e173081a80603551d230481a030819d8014eb4234d098b0ab9ff41b" +
"6b08f7cc642eef0e2c45a18181a47f307d310b300906035504061302494c311630140603" +
"55040a130d5374617274436f6d204c74642e312b3029060355040b132253656375726520" +
"4469676974616c204365727469666963617465205369676e696e67312930270603550403" +
"13205374617274436f6d2043657274696669636174696f6e20417574686f726974798201" +
"0a30230603551d12041c301a8618687474703a2f2f7777772e737461727473736c2e636f" +
"6d2f302c06096086480186f842010d041f161d5374617274436f6d205265766f63617469" +
"6f6e20417574686f72697479300d06092a864886f70d01010505000382010100182d2215" +
"8f0fc0291324fa8574c49bb8ff2835085adcbf7b7fc4191c397ab6951328253fffe1e5ec" +
"2a7da0d50fca1a404e6968481366939e666c0a6209073eca57973e2fefa9ed1718e8176f" +
"1d85527ff522c08db702e3b2b180f1cbff05d98128252cf0f450f7dd2772f4188047f19d" +
"c85317366f94bc52d60f453a550af58e308aaab00ced33040b62bf37f5b1ab2a4f7f0f80" +
"f763bf4d707bc8841d7ad9385ee2a4244469260b6f2bf085977af9074796048ecc2f9d48" +
"a1d24ce16e41a9941568fec5b42771e118f16c106a54ccc339a4b02166445a167902e75e" +
"6d8620b0825dcd18a069b90fd851d10fa8effd409deec02860d26d8d833f304b10669b42"
const startComHex = "308206343082041ca003020102020118300d06092a864886f70d0101050500307d310b30" +
"0906035504061302494c31163014060355040a130d5374617274436f6d204c74642e312b" +
"3029060355040b1322536563757265204469676974616c20436572746966696361746520" +
"5369676e696e6731293027060355040313205374617274436f6d20436572746966696361" +
"74696f6e20417574686f72697479301e170d3037313032343230353431375a170d313731" +
"3032343230353431375a30818c310b300906035504061302494c31163014060355040a13" +
"0d5374617274436f6d204c74642e312b3029060355040b13225365637572652044696769" +
"74616c204365727469666963617465205369676e696e67313830360603550403132f5374" +
"617274436f6d20436c6173732031205072696d61727920496e7465726d65646961746520" +
"53657276657220434130820122300d06092a864886f70d01010105000382010f00308201" +
"0a0282010100b689c6acef09527807ac9263d0f44418188480561f91aee187fa3250b4d3" +
"4706f0e6075f700e10f71dc0ce103634855a0f92ac83c6ac58523fba38e8fce7a724e240" +
"a60876c0926e9e2a6d4d3f6e61200adb59ded27d63b33e46fefa215118d7cd30a6ed076e" +
"3b7087b4f9faebee823c056f92f7a4dc0a301e9373fe07cad75f809d225852ae06da8b87" +
"2369b0e42ad8ea83d2bdf371db705a280faf5a387045123f304dcd3baf17e50fcba0a95d" +
"48aab16150cb34cd3c5cc30be810c08c9bf0030362feb26c3e720eee1c432ac9480e5739" +
"c43121c810c12c87fe5495521f523c31129b7fe7c0a0a559d5e28f3ef0d5a8e1d77031a9" +
"c4b3cfaf6d532f06f4a70203010001a38201ad308201a9300f0603551d130101ff040530" +
"030101ff300e0603551d0f0101ff040403020106301d0603551d0e04160414eb4234d098" +
"b0ab9ff41b6b08f7cc642eef0e2c45301f0603551d230418301680144e0bef1aa4405ba5" +
"17698730ca346843d041aef2306606082b06010505070101045a3058302706082b060105" +
"05073001861b687474703a2f2f6f6373702e737461727473736c2e636f6d2f6361302d06" +
"082b060105050730028621687474703a2f2f7777772e737461727473736c2e636f6d2f73" +
"667363612e637274305b0603551d1f045430523027a025a0238621687474703a2f2f7777" +
"772e737461727473736c2e636f6d2f73667363612e63726c3027a025a023862168747470" +
"3a2f2f63726c2e737461727473736c2e636f6d2f73667363612e63726c3081800603551d" +
"20047930773075060b2b0601040181b5370102013066302e06082b060105050702011622" +
"687474703a2f2f7777772e737461727473736c2e636f6d2f706f6c6963792e7064663034" +
"06082b060105050702011628687474703a2f2f7777772e737461727473736c2e636f6d2f" +
"696e7465726d6564696174652e706466300d06092a864886f70d01010505000382020100" +
"2109493ea5886ee00b8b48da314d8ff75657a2e1d36257e9b556f38545753be5501f048b" +
"e6a05a3ee700ae85d0fbff200364cbad02e1c69172f8a34dd6dee8cc3fa18aa2e37c37a7" +
"c64f8f35d6f4d66e067bdd21d9cf56ffcb302249fe8904f385e5aaf1e71fe875904dddf9" +
"46f74234f745580c110d84b0c6da5d3ef9019ee7e1da5595be741c7bfc4d144fac7e5547" +
"7d7bf4a50d491e95e8f712c1ccff76a62547d0f37535be97b75816ebaa5c786fec5330af" +
"ea044dcca902e3f0b60412f630b1113d904e5664d7dc3c435f7339ef4baf87ebf6fe6888" +
"4472ead207c669b0c1a18bef1749d761b145485f3b2021e95bb2ccf4d7e931f50b15613b" +
"7a94e3ebd9bc7f94ae6ae3626296a8647cb887f399327e92a252bebbf865cfc9f230fc8b" +
"c1c2a696d75f89e15c3480f58f47072fb491bfb1a27e5f4b5ad05b9f248605515a690365" +
"434971c5e06f94346bf61bd8a9b04c7e53eb8f48dfca33b548fa364a1a53a6330cd089cd" +
"4915cd89313c90c072d7654b52358a461144b93d8e2865a63e799e5c084429adb035112e" +
"214eb8d2e7103e5d8483b3c3c2e4d2c6fd094b7409ddf1b3d3193e800da20b19f038e7c5" +
"c2afe223db61e29d5c6e2089492e236ab262c145b49faf8ba7f1223bf87de290d07a19fb" +
"4a4ce3d27d5f4a8303ed27d6239e6b8db459a2d9ef6c8229dd75193c3f4c108defbb7527" +
"d2ae83a7a8ce5ba7"
const ocspResponseWithoutCertHex = "308201d40a0100a08201cd308201c906092b0601050507300101048201ba3082" +
"01b630819fa2160414884451ff502a695e2d88f421bad90cf2cecbea7c180f3230313330" +
"3631383037323434335a30743072304a300906052b0e03021a0500041448b60d38238df8" +
"456e4ee5843ea394111802979f0414884451ff502a695e2d88f421bad90cf2cecbea7c02" +
"1100f78b13b946fc9635d8ab49de9d2148218000180f3230313330363138303732343433" +
"5aa011180f32303133303632323037323434335a300d06092a864886f70d010105050003" +
"82010100103e18b3d297a5e7a6c07a4fc52ac46a15c0eba96f3be17f0ffe84de5b8c8e05" +
"5a8f577586a849dc4abd6440eb6fedde4622451e2823c1cbf3558b4e8184959c9fe96eff" +
"8bc5f95866c58c6d087519faabfdae37e11d9874f1bc0db292208f645dd848185e4dd38b" +
"6a8547dfa7b74d514a8470015719064d35476b95bebb03d4d2845c5ca15202d2784878f2" +
"0f904c24f09736f044609e9c271381713400e563023d212db422236440c6f377bbf24b2b" +
"9e7dec8698e36a8df68b7592ad3489fb2937afb90eb85d2aa96b81c94c25057dbd4759d9" +
"20a1a65c7f0b6427a224b3c98edd96b9b61f706099951188b0289555ad30a216fb774651" +
"5a35fca2e054dfa8"
const ocspRequestHex = "30563054a003020100304d304b3049300906052b0e03021a05000414c0fe0278fc991888" +
"91b3f212e9c7e1b21ab7bfc004140dfc1df0a9e0f01ce7f2b213177e6f8d157cd4f60210" +
"017f77deb3bcbb235d44ccc7dba62e72"
const leafCertHex = "308203c830820331a0030201020210017f77deb3bcbb235d44ccc7dba62e72300d06092a" +
"864886f70d01010505003081ba311f301d060355040a1316566572695369676e20547275" +
"7374204e6574776f726b31173015060355040b130e566572695369676e2c20496e632e31" +
"333031060355040b132a566572695369676e20496e7465726e6174696f6e616c20536572" +
"766572204341202d20436c617373203331493047060355040b13407777772e7665726973" +
"69676e2e636f6d2f43505320496e636f72702e6279205265662e204c494142494c495459" +
"204c54442e286329393720566572695369676e301e170d3132303632313030303030305a" +
"170d3133313233313233353935395a3068310b3009060355040613025553311330110603" +
"550408130a43616c69666f726e6961311230100603550407130950616c6f20416c746f31" +
"173015060355040a130e46616365626f6f6b2c20496e632e311730150603550403140e2a" +
"2e66616365626f6f6b2e636f6d30819f300d06092a864886f70d010101050003818d0030" +
"818902818100ae94b171e2deccc1693e051063240102e0689ae83c39b6b3e74b97d48d7b" +
"23689100b0b496ee62f0e6d356bcf4aa0f50643402f5d1766aa972835a7564723f39bbef" +
"5290ded9bcdbf9d3d55dfad23aa03dc604c54d29cf1d4b3bdbd1a809cfae47b44c7eae17" +
"c5109bee24a9cf4a8d911bb0fd0415ae4c3f430aa12a557e2ae10203010001a382011e30" +
"82011a30090603551d130402300030440603551d20043d303b3039060b6086480186f845" +
"01071703302a302806082b06010505070201161c68747470733a2f2f7777772e76657269" +
"7369676e2e636f6d2f727061303c0603551d1f043530333031a02fa02d862b687474703a" +
"2f2f535652496e746c2d63726c2e766572697369676e2e636f6d2f535652496e746c2e63" +
"726c301d0603551d250416301406082b0601050507030106082b06010505070302300b06" +
"03551d0f0404030205a0303406082b0601050507010104283026302406082b0601050507" +
"30018618687474703a2f2f6f6373702e766572697369676e2e636f6d30270603551d1104" +
"20301e820e2a2e66616365626f6f6b2e636f6d820c66616365626f6f6b2e636f6d300d06" +
"092a864886f70d0101050500038181005b6c2b75f8ed30aa51aad36aba595e555141951f" +
"81a53b447910ac1f76ff78fc2781616b58f3122afc1c87010425e9ed43df1a7ba6498060" +
"67e2688af03db58c7df4ee03309a6afc247ccb134dc33e54c6bc1d5133a532a73273b1d7" +
"9cadc08e7e1a83116d34523340b0305427a21742827c98916698ee7eaf8c3bdd71700817"
const issuerCertHex = "30820383308202eca003020102021046fcebbab4d02f0f926098233f93078f300d06092a" +
"864886f70d0101050500305f310b300906035504061302555331173015060355040a130e" +
"566572695369676e2c20496e632e31373035060355040b132e436c617373203320507562" +
"6c6963205072696d6172792043657274696669636174696f6e20417574686f7269747930" +
"1e170d3937303431373030303030305a170d3136313032343233353935395a3081ba311f" +
"301d060355040a1316566572695369676e205472757374204e6574776f726b3117301506" +
"0355040b130e566572695369676e2c20496e632e31333031060355040b132a5665726953" +
"69676e20496e7465726e6174696f6e616c20536572766572204341202d20436c61737320" +
"3331493047060355040b13407777772e766572697369676e2e636f6d2f43505320496e63" +
"6f72702e6279205265662e204c494142494c495459204c54442e28632939372056657269" +
"5369676e30819f300d06092a864886f70d010101050003818d0030818902818100d88280" +
"e8d619027d1f85183925a2652be1bfd405d3bce6363baaf04c6c5bb6e7aa3c734555b2f1" +
"bdea9742ed9a340a15d4a95cf54025ddd907c132b2756cc4cabba3fe56277143aa63f530" +
"3e9328e5faf1093bf3b74d4e39f75c495ab8c11dd3b28afe70309542cbfe2b518b5a3c3a" +
"f9224f90b202a7539c4f34e7ab04b27b6f0203010001a381e33081e0300f0603551d1304" +
"0830060101ff02010030440603551d20043d303b3039060b6086480186f8450107010130" +
"2a302806082b06010505070201161c68747470733a2f2f7777772e766572697369676e2e" +
"636f6d2f43505330340603551d25042d302b06082b0601050507030106082b0601050507" +
"030206096086480186f8420401060a6086480186f845010801300b0603551d0f04040302" +
"0106301106096086480186f842010104040302010630310603551d1f042a30283026a024" +
"a0228620687474703a2f2f63726c2e766572697369676e2e636f6d2f706361332e63726c" +
"300d06092a864886f70d010105050003818100408e4997968a73dd8e4def3e61b7caa062" +
"adf40e0abb753de26ed82cc7bff4b98c369bcaa2d09c724639f6a682036511c4bcbf2da6" +
"f5d93b0ab598fab378b91ef22b4c62d5fdb27a1ddf33fd73f9a5d82d8c2aead1fcb028b6" +
"e94948134b838a1b487b24f738de6f4154b8ab576b06dfc7a2d4a9f6f136628088f28b75" +
"d68071"
// Key and certificate for the OCSP responder were not taken from the Thawte
// responder, since CreateResponse requires that we have the private key.
// Instead, they were generated randomly.
const responderPrivateKeyHex = "308204a40201000282010100e8155f2d3e6f2e8d14c62a788bd462f9f844e7a6977c83ef" +
"1099f0f6616ec5265b56f356e62c5400f0b06a2e7945a82752c636df32a895152d6074df" +
"1701dc6ccfbcbec75a70bd2b55ae2be7e6cad3b5fd4cd5b7790ab401a436d3f5f346074f" +
"fde8a99d5b723350f0a112076614b12ef79c78991b119453445acf2416ab0046b540db14" +
"c9fc0f27b8989ad0f63aa4b8aefc91aa8a72160c36307c60fec78a93d3fddf4259902aa7" +
"7e7332971c7d285b6a04f648993c6922a3e9da9adf5f81508c3228791843e5d49f24db2f" +
"1290bafd97e655b1049a199f652cd603c4fafa330c390b0da78fbbc67e8fa021cbd74eb9" +
"6222b12ace31a77dcf920334dc94581b02030100010282010100bcf0b93d7238bda329a8" +
"72e7149f61bcb37c154330ccb3f42a85c9002c2e2bdea039d77d8581cd19bed94078794e" +
"56293d601547fc4bf6a2f9002fe5772b92b21b254403b403585e3130cc99ccf08f0ef81a" +
"575b38f597ba4660448b54f44bfbb97072b5a2bf043bfeca828cf7741d13698e3f38162b" +
"679faa646b82abd9a72c5c7d722c5fc577a76d2c2daac588accad18516d1bbad10b0dfa2" +
"05cfe246b59e28608a43942e1b71b0c80498075121de5b900d727c31c42c78cf1db5c0aa" +
"5b491e10ea4ed5c0962aaf2ae025dd81fa4ce490d9d6b4a4465411d8e542fc88617e5695" +
"1aa4fc8ea166f2b4d0eb89ef17f2b206bd5f1014bf8fe0e71fe62f2cccf102818100f2dc" +
"ddf878d553286daad68bac4070a82ffec3dc4666a2750f47879eec913f91836f1d976b60" +
"daf9356e078446dafab5bd2e489e5d64f8572ba24a4ba4f3729b5e106c4dd831cc2497a7" +
"e6c7507df05cb64aeb1bbc81c1e340d58b5964cf39cff84ea30c29ec5d3f005ee1362698" +
"07395037955955655292c3e85f6187fa1f9502818100f4a33c102630840705f8c778a47b" +
"87e8da31e68809af981ac5e5999cf1551685d761cdf0d6520361b99aebd5777a940fa64d" +
"327c09fa63746fbb3247ec73a86edf115f1fe5c83598db803881ade71c33c6e956118345" +
"497b98b5e07bb5be75971465ec78f2f9467e1b74956ca9d4c7c3e314e742a72d8b33889c" +
"6c093a466cef0281801d3df0d02124766dd0be98349b19eb36a508c4e679e793ba0a8bef" +
"4d786888c1e9947078b1ea28938716677b4ad8c5052af12eb73ac194915264a913709a0b" +
"7b9f98d4a18edd781a13d49899f91c20dbd8eb2e61d991ba19b5cdc08893f5cb9d39e5a6" +
"0629ea16d426244673b1b3ee72bd30e41fac8395acac40077403de5efd028180050731dd" +
"d71b1a2b96c8d538ba90bb6b62c8b1c74c03aae9a9f59d21a7a82b0d572ef06fa9c807bf" +
"c373d6b30d809c7871df96510c577421d9860c7383fda0919ece19996b3ca13562159193" +
"c0c246471e287f975e8e57034e5136aaf44254e2650def3d51292474c515b1588969112e" +
"0a85cc77073e9d64d2c2fc497844284b02818100d71d63eabf416cf677401ebf965f8314" +
"120b568a57dd3bd9116c629c40dc0c6948bab3a13cc544c31c7da40e76132ef5dd3f7534" +
"45a635930c74326ae3df0edd1bfb1523e3aa259873ac7cf1ac31151ec8f37b528c275622" +
"48f99b8bed59fd4da2576aa6ee20d93a684900bf907e80c66d6e2261ae15e55284b4ed9d" +
"6bdaa059"
const responderCertHex = "308202e2308201caa003020102020101300d06092a864886f70d01010b05003019311730" +
"150603550403130e4f43535020526573706f6e646572301e170d31353031333031353530" +
"33335a170d3136303133303135353033335a3019311730150603550403130e4f43535020" +
"526573706f6e64657230820122300d06092a864886f70d01010105000382010f00308201" +
"0a0282010100e8155f2d3e6f2e8d14c62a788bd462f9f844e7a6977c83ef1099f0f6616e" +
"c5265b56f356e62c5400f0b06a2e7945a82752c636df32a895152d6074df1701dc6ccfbc" +
"bec75a70bd2b55ae2be7e6cad3b5fd4cd5b7790ab401a436d3f5f346074ffde8a99d5b72" +
"3350f0a112076614b12ef79c78991b119453445acf2416ab0046b540db14c9fc0f27b898" +
"9ad0f63aa4b8aefc91aa8a72160c36307c60fec78a93d3fddf4259902aa77e7332971c7d" +
"285b6a04f648993c6922a3e9da9adf5f81508c3228791843e5d49f24db2f1290bafd97e6" +
"55b1049a199f652cd603c4fafa330c390b0da78fbbc67e8fa021cbd74eb96222b12ace31" +
"a77dcf920334dc94581b0203010001a3353033300e0603551d0f0101ff04040302078030" +
"130603551d25040c300a06082b06010505070309300c0603551d130101ff04023000300d" +
"06092a864886f70d01010b05000382010100718012761b5063e18f0dc44644d8e6ab8612" +
"31c15fd5357805425d82aec1de85bf6d3e30fce205e3e3b8b795bbe52e40a439286d2288" +
"9064f4aeeb150359b9425f1da51b3a5c939018555d13ac42c565a0603786a919328f3267" +
"09dce52c22ad958ecb7873b9771d1148b1c4be2efe80ba868919fc9f68b6090c2f33c156" +
"d67156e42766a50b5d51e79637b7e58af74c2a951b1e642fa7741fec982cc937de37eff5" +
"9e2005d5939bfc031589ca143e6e8ab83f40ee08cc20a6b4a95a318352c28d18528dcaf9" +
"66705de17afa19d6e8ae91ddf33179d16ebb6ac2c69cae8373d408ebf8c55308be6c04d9" +
"3a25439a94299a65a709756c7a3e568be049d5c38839"

66
Godeps/_workspace/src/golang.org/x/crypto/sha3/doc.go generated vendored Normal file
View File

@ -0,0 +1,66 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package sha3 implements the SHA-3 fixed-output-length hash functions and
// the SHAKE variable-output-length hash functions defined by FIPS-202.
//
// Both types of hash function use the "sponge" construction and the Keccak
// permutation. For a detailed specification see http://keccak.noekeon.org/
//
//
// Guidance
//
// If you aren't sure what function you need, use SHAKE256 with at least 64
// bytes of output. The SHAKE instances are faster than the SHA3 instances;
// the latter have to allocate memory to conform to the hash.Hash interface.
//
// If you need a secret-key MAC (message authentication code), prepend the
// secret key to the input, hash with SHAKE256 and read at least 32 bytes of
// output.
//
//
// Security strengths
//
// The SHA3-x (x equals 224, 256, 384, or 512) functions have a security
// strength against preimage attacks of x bits. Since they only produce "x"
// bits of output, their collision-resistance is only "x/2" bits.
//
// The SHAKE-256 and -128 functions have a generic security strength of 256 and
// 128 bits against all attacks, provided that at least 2x bits of their output
// is used. Requesting more than 64 or 32 bytes of output, respectively, does
// not increase the collision-resistance of the SHAKE functions.
//
//
// The sponge construction
//
// A sponge builds a pseudo-random function from a public pseudo-random
// permutation, by applying the permutation to a state of "rate + capacity"
// bytes, but hiding "capacity" of the bytes.
//
// A sponge starts out with a zero state. To hash an input using a sponge, up
// to "rate" bytes of the input are XORed into the sponge's state. The sponge
// is then "full" and the permutation is applied to "empty" it. This process is
// repeated until all the input has been "absorbed". The input is then padded.
// The digest is "squeezed" from the sponge in the same way, except that output
// output is copied out instead of input being XORed in.
//
// A sponge is parameterized by its generic security strength, which is equal
// to half its capacity; capacity + rate is equal to the permutation's width.
// Since the KeccakF-1600 permutation is 1600 bits (200 bytes) wide, this means
// that the security strength of a sponge instance is equal to (1600 - bitrate) / 2.
//
//
// Recommendations
//
// The SHAKE functions are recommended for most new uses. They can produce
// output of arbitrary length. SHAKE256, with an output length of at least
// 64 bytes, provides 256-bit security against all attacks. The Keccak team
// recommends it for most applications upgrading from SHA2-512. (NIST chose a
// much stronger, but much slower, sponge instance for SHA3-512.)
//
// The SHA-3 functions are "drop-in" replacements for the SHA-2 functions.
// They produce output of the same length, with the same security strengths
// against all attacks. This means, in particular, that SHA3-256 only has
// 128-bit collision resistance, because its output length is 32 bytes.
package sha3

View File

@ -0,0 +1,65 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// This file provides functions for creating instances of the SHA-3
// and SHAKE hash functions, as well as utility functions for hashing
// bytes.
import (
"hash"
)
// New224 creates a new SHA3-224 hash.
// Its generic security strength is 224 bits against preimage attacks,
// and 112 bits against collision attacks.
func New224() hash.Hash { return &state{rate: 144, outputLen: 28, dsbyte: 0x06} }
// New256 creates a new SHA3-256 hash.
// Its generic security strength is 256 bits against preimage attacks,
// and 128 bits against collision attacks.
func New256() hash.Hash { return &state{rate: 136, outputLen: 32, dsbyte: 0x06} }
// New384 creates a new SHA3-384 hash.
// Its generic security strength is 384 bits against preimage attacks,
// and 192 bits against collision attacks.
func New384() hash.Hash { return &state{rate: 104, outputLen: 48, dsbyte: 0x06} }
// New512 creates a new SHA3-512 hash.
// Its generic security strength is 512 bits against preimage attacks,
// and 256 bits against collision attacks.
func New512() hash.Hash { return &state{rate: 72, outputLen: 64, dsbyte: 0x06} }
// Sum224 returns the SHA3-224 digest of the data.
func Sum224(data []byte) (digest [28]byte) {
h := New224()
h.Write(data)
h.Sum(digest[:0])
return
}
// Sum256 returns the SHA3-256 digest of the data.
func Sum256(data []byte) (digest [32]byte) {
h := New256()
h.Write(data)
h.Sum(digest[:0])
return
}
// Sum384 returns the SHA3-384 digest of the data.
func Sum384(data []byte) (digest [48]byte) {
h := New384()
h.Write(data)
h.Sum(digest[:0])
return
}
// Sum512 returns the SHA3-512 digest of the data.
func Sum512(data []byte) (digest [64]byte) {
h := New512()
h.Write(data)
h.Sum(digest[:0])
return
}

View File

@ -0,0 +1,410 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// rc stores the round constants for use in the ι step.
var rc = [24]uint64{
0x0000000000000001,
0x0000000000008082,
0x800000000000808A,
0x8000000080008000,
0x000000000000808B,
0x0000000080000001,
0x8000000080008081,
0x8000000000008009,
0x000000000000008A,
0x0000000000000088,
0x0000000080008009,
0x000000008000000A,
0x000000008000808B,
0x800000000000008B,
0x8000000000008089,
0x8000000000008003,
0x8000000000008002,
0x8000000000000080,
0x000000000000800A,
0x800000008000000A,
0x8000000080008081,
0x8000000000008080,
0x0000000080000001,
0x8000000080008008,
}
// keccakF1600 applies the Keccak permutation to a 1600b-wide
// state represented as a slice of 25 uint64s.
func keccakF1600(a *[25]uint64) {
// Implementation translated from Keccak-inplace.c
// in the keccak reference code.
var t, bc0, bc1, bc2, bc3, bc4, d0, d1, d2, d3, d4 uint64
for i := 0; i < 24; i += 4 {
// Combines the 5 steps in each round into 2 steps.
// Unrolls 4 rounds per loop and spreads some steps across rounds.
// Round 1
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[6] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[12] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[18] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[24] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i]
a[6] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[16] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[22] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[3] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[10] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[1] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[7] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[19] ^ d4
bc3 = t<<8 | t>>(64-8)
a[20] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[11] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[23] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[4] ^ d4
bc0 = t<<27 | t>>(64-27)
a[5] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[2] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[8] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[14] ^ d4
bc2 = t<<39 | t>>(64-39)
a[15] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
// Round 2
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[16] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[7] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[23] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[14] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+1]
a[16] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[11] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[2] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[18] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[20] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[6] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[22] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[4] ^ d4
bc3 = t<<8 | t>>(64-8)
a[15] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[1] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[8] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[24] ^ d4
bc0 = t<<27 | t>>(64-27)
a[10] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[12] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[3] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[19] ^ d4
bc2 = t<<39 | t>>(64-39)
a[5] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
// Round 3
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[11] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[22] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[8] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[19] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+2]
a[11] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[1] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[12] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[23] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[15] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[16] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[2] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[24] ^ d4
bc3 = t<<8 | t>>(64-8)
a[5] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[6] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[3] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[14] ^ d4
bc0 = t<<27 | t>>(64-27)
a[20] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[7] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[18] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[4] ^ d4
bc2 = t<<39 | t>>(64-39)
a[10] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
// Round 4
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[1] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[2] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[3] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[4] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+3]
a[1] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[6] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[7] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[8] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[5] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[11] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[12] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[14] ^ d4
bc3 = t<<8 | t>>(64-8)
a[10] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[16] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[18] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[19] ^ d4
bc0 = t<<27 | t>>(64-27)
a[15] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[22] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[23] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[24] ^ d4
bc2 = t<<39 | t>>(64-39)
a[20] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
}
}

View File

@ -0,0 +1,18 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.4
package sha3
import (
"crypto"
)
func init() {
crypto.RegisterHash(crypto.SHA3_224, New224)
crypto.RegisterHash(crypto.SHA3_256, New256)
crypto.RegisterHash(crypto.SHA3_384, New384)
crypto.RegisterHash(crypto.SHA3_512, New512)
}

193
Godeps/_workspace/src/golang.org/x/crypto/sha3/sha3.go generated vendored Normal file
View File

@ -0,0 +1,193 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// spongeDirection indicates the direction bytes are flowing through the sponge.
type spongeDirection int
const (
// spongeAbsorbing indicates that the sponge is absorbing input.
spongeAbsorbing spongeDirection = iota
// spongeSqueezing indicates that the sponge is being squeezed.
spongeSqueezing
)
const (
// maxRate is the maximum size of the internal buffer. SHAKE-256
// currently needs the largest buffer.
maxRate = 168
)
type state struct {
// Generic sponge components.
a [25]uint64 // main state of the hash
buf []byte // points into storage
rate int // the number of bytes of state to use
// dsbyte contains the "domain separation" bits and the first bit of
// the padding. Sections 6.1 and 6.2 of [1] separate the outputs of the
// SHA-3 and SHAKE functions by appending bitstrings to the message.
// Using a little-endian bit-ordering convention, these are "01" for SHA-3
// and "1111" for SHAKE, or 00000010b and 00001111b, respectively. Then the
// padding rule from section 5.1 is applied to pad the message to a multiple
// of the rate, which involves adding a "1" bit, zero or more "0" bits, and
// a final "1" bit. We merge the first "1" bit from the padding into dsbyte,
// giving 00000110b (0x06) and 00011111b (0x1f).
// [1] http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
// "Draft FIPS 202: SHA-3 Standard: Permutation-Based Hash and
// Extendable-Output Functions (May 2014)"
dsbyte byte
storage [maxRate]byte
// Specific to SHA-3 and SHAKE.
fixedOutput bool // whether this is a fixed-ouput-length instance
outputLen int // the default output size in bytes
state spongeDirection // whether the sponge is absorbing or squeezing
}
// BlockSize returns the rate of sponge underlying this hash function.
func (d *state) BlockSize() int { return d.rate }
// Size returns the output size of the hash function in bytes.
func (d *state) Size() int { return d.outputLen }
// Reset clears the internal state by zeroing the sponge state and
// the byte buffer, and setting Sponge.state to absorbing.
func (d *state) Reset() {
// Zero the permutation's state.
for i := range d.a {
d.a[i] = 0
}
d.state = spongeAbsorbing
d.buf = d.storage[:0]
}
func (d *state) clone() *state {
ret := *d
if ret.state == spongeAbsorbing {
ret.buf = ret.storage[:len(ret.buf)]
} else {
ret.buf = ret.storage[d.rate-cap(d.buf) : d.rate]
}
return &ret
}
// permute applies the KeccakF-1600 permutation. It handles
// any input-output buffering.
func (d *state) permute() {
switch d.state {
case spongeAbsorbing:
// If we're absorbing, we need to xor the input into the state
// before applying the permutation.
xorIn(d, d.buf)
d.buf = d.storage[:0]
keccakF1600(&d.a)
case spongeSqueezing:
// If we're squeezing, we need to apply the permutatin before
// copying more output.
keccakF1600(&d.a)
d.buf = d.storage[:d.rate]
copyOut(d, d.buf)
}
}
// pads appends the domain separation bits in dsbyte, applies
// the multi-bitrate 10..1 padding rule, and permutes the state.
func (d *state) padAndPermute(dsbyte byte) {
if d.buf == nil {
d.buf = d.storage[:0]
}
// Pad with this instance's domain-separator bits. We know that there's
// at least one byte of space in d.buf because, if it were full,
// permute would have been called to empty it. dsbyte also contains the
// first one bit for the padding. See the comment in the state struct.
d.buf = append(d.buf, dsbyte)
zerosStart := len(d.buf)
d.buf = d.storage[:d.rate]
for i := zerosStart; i < d.rate; i++ {
d.buf[i] = 0
}
// This adds the final one bit for the padding. Because of the way that
// bits are numbered from the LSB upwards, the final bit is the MSB of
// the last byte.
d.buf[d.rate-1] ^= 0x80
// Apply the permutation
d.permute()
d.state = spongeSqueezing
d.buf = d.storage[:d.rate]
copyOut(d, d.buf)
}
// Write absorbs more data into the hash's state. It produces an error
// if more data is written to the ShakeHash after writing
func (d *state) Write(p []byte) (written int, err error) {
if d.state != spongeAbsorbing {
panic("sha3: write to sponge after read")
}
if d.buf == nil {
d.buf = d.storage[:0]
}
written = len(p)
for len(p) > 0 {
if len(d.buf) == 0 && len(p) >= d.rate {
// The fast path; absorb a full "rate" bytes of input and apply the permutation.
xorIn(d, p[:d.rate])
p = p[d.rate:]
keccakF1600(&d.a)
} else {
// The slow path; buffer the input until we can fill the sponge, and then xor it in.
todo := d.rate - len(d.buf)
if todo > len(p) {
todo = len(p)
}
d.buf = append(d.buf, p[:todo]...)
p = p[todo:]
// If the sponge is full, apply the permutation.
if len(d.buf) == d.rate {
d.permute()
}
}
}
return
}
// Read squeezes an arbitrary number of bytes from the sponge.
func (d *state) Read(out []byte) (n int, err error) {
// If we're still absorbing, pad and apply the permutation.
if d.state == spongeAbsorbing {
d.padAndPermute(d.dsbyte)
}
n = len(out)
// Now, do the squeezing.
for len(out) > 0 {
n := copy(out, d.buf)
d.buf = d.buf[n:]
out = out[n:]
// Apply the permutation if we've squeezed the sponge dry.
if len(d.buf) == 0 {
d.permute()
}
}
return
}
// Sum applies padding to the hash state and then squeezes out the desired
// number of output bytes.
func (d *state) Sum(in []byte) []byte {
// Make a copy of the original hash so that caller can keep writing
// and summing.
dup := d.clone()
hash := make([]byte, dup.outputLen)
dup.Read(hash)
return append(in, hash...)
}

View File

@ -0,0 +1,306 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// Tests include all the ShortMsgKATs provided by the Keccak team at
// https://github.com/gvanas/KeccakCodePackage
//
// They only include the zero-bit case of the bitwise testvectors
// published by NIST in the draft of FIPS-202.
import (
"bytes"
"compress/flate"
"encoding/hex"
"encoding/json"
"hash"
"os"
"strings"
"testing"
)
const (
testString = "brekeccakkeccak koax koax"
katFilename = "testdata/keccakKats.json.deflate"
)
// Internal-use instances of SHAKE used to test against KATs.
func newHashShake128() hash.Hash {
return &state{rate: 168, dsbyte: 0x1f, outputLen: 512}
}
func newHashShake256() hash.Hash {
return &state{rate: 136, dsbyte: 0x1f, outputLen: 512}
}
// testDigests contains functions returning hash.Hash instances
// with output-length equal to the KAT length for both SHA-3 and
// SHAKE instances.
var testDigests = map[string]func() hash.Hash{
"SHA3-224": New224,
"SHA3-256": New256,
"SHA3-384": New384,
"SHA3-512": New512,
"SHAKE128": newHashShake128,
"SHAKE256": newHashShake256,
}
// testShakes contains functions that return ShakeHash instances for
// testing the ShakeHash-specific interface.
var testShakes = map[string]func() ShakeHash{
"SHAKE128": NewShake128,
"SHAKE256": NewShake256,
}
// decodeHex converts a hex-encoded string into a raw byte string.
func decodeHex(s string) []byte {
b, err := hex.DecodeString(s)
if err != nil {
panic(err)
}
return b
}
// structs used to marshal JSON test-cases.
type KeccakKats struct {
Kats map[string][]struct {
Digest string `json:"digest"`
Length int64 `json:"length"`
Message string `json:"message"`
}
}
func testUnalignedAndGeneric(t *testing.T, testf func(impl string)) {
xorInOrig, copyOutOrig := xorIn, copyOut
xorIn, copyOut = xorInGeneric, copyOutGeneric
testf("generic")
if xorImplementationUnaligned != "generic" {
xorIn, copyOut = xorInUnaligned, copyOutUnaligned
testf("unaligned")
}
xorIn, copyOut = xorInOrig, copyOutOrig
}
// TestKeccakKats tests the SHA-3 and Shake implementations against all the
// ShortMsgKATs from https://github.com/gvanas/KeccakCodePackage
// (The testvectors are stored in keccakKats.json.deflate due to their length.)
func TestKeccakKats(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
// Read the KATs.
deflated, err := os.Open(katFilename)
if err != nil {
t.Errorf("error opening %s: %s", katFilename, err)
}
file := flate.NewReader(deflated)
dec := json.NewDecoder(file)
var katSet KeccakKats
err = dec.Decode(&katSet)
if err != nil {
t.Errorf("error decoding KATs: %s", err)
}
// Do the KATs.
for functionName, kats := range katSet.Kats {
d := testDigests[functionName]()
for _, kat := range kats {
d.Reset()
in, err := hex.DecodeString(kat.Message)
if err != nil {
t.Errorf("error decoding KAT: %s", err)
}
d.Write(in[:kat.Length/8])
got := strings.ToUpper(hex.EncodeToString(d.Sum(nil)))
if got != kat.Digest {
t.Errorf("function=%s, implementation=%s, length=%d\nmessage:\n %s\ngot:\n %s\nwanted:\n %s",
functionName, impl, kat.Length, kat.Message, got, kat.Digest)
t.Logf("wanted %+v", kat)
t.FailNow()
}
continue
}
}
})
}
// TestUnalignedWrite tests that writing data in an arbitrary pattern with
// small input buffers.
func testUnalignedWrite(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
buf := sequentialBytes(0x10000)
for alg, df := range testDigests {
d := df()
d.Reset()
d.Write(buf)
want := d.Sum(nil)
d.Reset()
for i := 0; i < len(buf); {
// Cycle through offsets which make a 137 byte sequence.
// Because 137 is prime this sequence should exercise all corner cases.
offsets := [17]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1}
for _, j := range offsets {
if v := len(buf) - i; v < j {
j = v
}
d.Write(buf[i : i+j])
i += j
}
}
got := d.Sum(nil)
if !bytes.Equal(got, want) {
t.Errorf("Unaligned writes, implementation=%s, alg=%s\ngot %q, want %q", impl, alg, got, want)
}
}
})
}
// TestAppend checks that appending works when reallocation is necessary.
func TestAppend(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
d := New224()
for capacity := 2; capacity <= 66; capacity += 64 {
// The first time around the loop, Sum will have to reallocate.
// The second time, it will not.
buf := make([]byte, 2, capacity)
d.Reset()
d.Write([]byte{0xcc})
buf = d.Sum(buf)
expected := "0000DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39"
if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected {
t.Errorf("got %s, want %s", got, expected)
}
}
})
}
// TestAppendNoRealloc tests that appending works when no reallocation is necessary.
func TestAppendNoRealloc(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
buf := make([]byte, 1, 200)
d := New224()
d.Write([]byte{0xcc})
buf = d.Sum(buf)
expected := "00DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39"
if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected {
t.Errorf("%s: got %s, want %s", impl, got, expected)
}
})
}
// TestSqueezing checks that squeezing the full output a single time produces
// the same output as repeatedly squeezing the instance.
func TestSqueezing(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
for functionName, newShakeHash := range testShakes {
d0 := newShakeHash()
d0.Write([]byte(testString))
ref := make([]byte, 32)
d0.Read(ref)
d1 := newShakeHash()
d1.Write([]byte(testString))
var multiple []byte
for _ = range ref {
one := make([]byte, 1)
d1.Read(one)
multiple = append(multiple, one...)
}
if !bytes.Equal(ref, multiple) {
t.Errorf("%s (%s): squeezing %d bytes one at a time failed", functionName, impl, len(ref))
}
}
})
}
// sequentialBytes produces a buffer of size consecutive bytes 0x00, 0x01, ..., used for testing.
func sequentialBytes(size int) []byte {
result := make([]byte, size)
for i := range result {
result[i] = byte(i)
}
return result
}
// BenchmarkPermutationFunction measures the speed of the permutation function
// with no input data.
func BenchmarkPermutationFunction(b *testing.B) {
b.SetBytes(int64(200))
var lanes [25]uint64
for i := 0; i < b.N; i++ {
keccakF1600(&lanes)
}
}
// benchmarkHash tests the speed to hash num buffers of buflen each.
func benchmarkHash(b *testing.B, h hash.Hash, size, num int) {
b.StopTimer()
h.Reset()
data := sequentialBytes(size)
b.SetBytes(int64(size * num))
b.StartTimer()
var state []byte
for i := 0; i < b.N; i++ {
for j := 0; j < num; j++ {
h.Write(data)
}
state = h.Sum(state[:0])
}
b.StopTimer()
h.Reset()
}
// benchmarkShake is specialized to the Shake instances, which don't
// require a copy on reading output.
func benchmarkShake(b *testing.B, h ShakeHash, size, num int) {
b.StopTimer()
h.Reset()
data := sequentialBytes(size)
d := make([]byte, 32)
b.SetBytes(int64(size * num))
b.StartTimer()
for i := 0; i < b.N; i++ {
h.Reset()
for j := 0; j < num; j++ {
h.Write(data)
}
h.Read(d)
}
}
func BenchmarkSha3_512_MTU(b *testing.B) { benchmarkHash(b, New512(), 1350, 1) }
func BenchmarkSha3_384_MTU(b *testing.B) { benchmarkHash(b, New384(), 1350, 1) }
func BenchmarkSha3_256_MTU(b *testing.B) { benchmarkHash(b, New256(), 1350, 1) }
func BenchmarkSha3_224_MTU(b *testing.B) { benchmarkHash(b, New224(), 1350, 1) }
func BenchmarkShake128_MTU(b *testing.B) { benchmarkShake(b, NewShake128(), 1350, 1) }
func BenchmarkShake256_MTU(b *testing.B) { benchmarkShake(b, NewShake256(), 1350, 1) }
func BenchmarkShake256_16x(b *testing.B) { benchmarkShake(b, NewShake256(), 16, 1024) }
func BenchmarkShake256_1MiB(b *testing.B) { benchmarkShake(b, NewShake256(), 1024, 1024) }
func BenchmarkSha3_512_1MiB(b *testing.B) { benchmarkHash(b, New512(), 1024, 1024) }
func Example_sum() {
buf := []byte("some data to hash")
// A hash needs to be 64 bytes long to have 256-bit collision resistance.
h := make([]byte, 64)
// Compute a 64-byte hash of buf and put it in h.
ShakeSum256(h, buf)
}
func Example_mac() {
k := []byte("this is a secret key; you should generate a strong random key that's at least 32 bytes long")
buf := []byte("and this is some data to authenticate")
// A MAC with 32 bytes of output has 256-bit security strength -- if you use at least a 32-byte-long key.
h := make([]byte, 32)
d := NewShake256()
// Write the key into the hash.
d.Write(k)
// Now write the data.
d.Write(buf)
// Read 32 bytes of output from the hash into h.
d.Read(h)
}

View File

@ -0,0 +1,60 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// This file defines the ShakeHash interface, and provides
// functions for creating SHAKE instances, as well as utility
// functions for hashing bytes to arbitrary-length output.
import (
"io"
)
// ShakeHash defines the interface to hash functions that
// support arbitrary-length output.
type ShakeHash interface {
// Write absorbs more data into the hash's state. It panics if input is
// written to it after output has been read from it.
io.Writer
// Read reads more output from the hash; reading affects the hash's
// state. (ShakeHash.Read is thus very different from Hash.Sum)
// It never returns an error.
io.Reader
// Clone returns a copy of the ShakeHash in its current state.
Clone() ShakeHash
// Reset resets the ShakeHash to its initial state.
Reset()
}
func (d *state) Clone() ShakeHash {
return d.clone()
}
// NewShake128 creates a new SHAKE128 variable-output-length ShakeHash.
// Its generic security strength is 128 bits against all attacks if at
// least 32 bytes of its output are used.
func NewShake128() ShakeHash { return &state{rate: 168, dsbyte: 0x1f} }
// NewShake256 creates a new SHAKE128 variable-output-length ShakeHash.
// Its generic security strength is 256 bits against all attacks if
// at least 64 bytes of its output are used.
func NewShake256() ShakeHash { return &state{rate: 136, dsbyte: 0x1f} }
// ShakeSum128 writes an arbitrary-length digest of data into hash.
func ShakeSum128(hash, data []byte) {
h := NewShake128()
h.Write(data)
h.Read(hash)
}
// ShakeSum256 writes an arbitrary-length digest of data into hash.
func ShakeSum256(hash, data []byte) {
h := NewShake256()
h.Write(data)
h.Read(hash)
}

Binary file not shown.

16
Godeps/_workspace/src/golang.org/x/crypto/sha3/xor.go generated vendored Normal file
View File

@ -0,0 +1,16 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64,!386 appengine
package sha3
var (
xorIn = xorInGeneric
copyOut = copyOutGeneric
xorInUnaligned = xorInGeneric
copyOutUnaligned = copyOutGeneric
)
const xorImplementationUnaligned = "generic"

View File

@ -0,0 +1,28 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
import "encoding/binary"
// xorInGeneric xors the bytes in buf into the state; it
// makes no non-portable assumptions about memory layout
// or alignment.
func xorInGeneric(d *state, buf []byte) {
n := len(buf) / 8
for i := 0; i < n; i++ {
a := binary.LittleEndian.Uint64(buf)
d.a[i] ^= a
buf = buf[8:]
}
}
// copyOutGeneric copies ulint64s to a byte buffer.
func copyOutGeneric(d *state, b []byte) {
for i := 0; len(b) >= 8; i++ {
binary.LittleEndian.PutUint64(b, d.a[i])
b = b[8:]
}
}

View File

@ -0,0 +1,58 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64 386
// +build !appengine
package sha3
import "unsafe"
func xorInUnaligned(d *state, buf []byte) {
bw := (*[maxRate / 8]uint64)(unsafe.Pointer(&buf[0]))
n := len(buf)
if n >= 72 {
d.a[0] ^= bw[0]
d.a[1] ^= bw[1]
d.a[2] ^= bw[2]
d.a[3] ^= bw[3]
d.a[4] ^= bw[4]
d.a[5] ^= bw[5]
d.a[6] ^= bw[6]
d.a[7] ^= bw[7]
d.a[8] ^= bw[8]
}
if n >= 104 {
d.a[9] ^= bw[9]
d.a[10] ^= bw[10]
d.a[11] ^= bw[11]
d.a[12] ^= bw[12]
}
if n >= 136 {
d.a[13] ^= bw[13]
d.a[14] ^= bw[14]
d.a[15] ^= bw[15]
d.a[16] ^= bw[16]
}
if n >= 144 {
d.a[17] ^= bw[17]
}
if n >= 168 {
d.a[18] ^= bw[18]
d.a[19] ^= bw[19]
d.a[20] ^= bw[20]
}
}
func copyOutUnaligned(d *state, buf []byte) {
ab := (*[maxRate]uint8)(unsafe.Pointer(&d.a[0]))
copy(buf, ab[:])
}
var (
xorIn = xorInUnaligned
copyOut = copyOutUnaligned
)
const xorImplementationUnaligned = "unaligned"

View File

@ -6,6 +6,7 @@
* Searchable history
* Persistent connections
* Multiple users
* Automatic HTTPS through Let's Encrypt
## Usage
There is a few different ways of getting it:

View File

@ -69,7 +69,7 @@ func bundle_css_gz() (*asset, error) {
return nil, err
}
info := bindata_file_info{name: "bundle.css.gz", size: 1706, mode: os.FileMode(436), modTime: time.Unix(1451510920, 0)}
info := bindata_file_info{name: "bundle.css.gz", size: 1706, mode: os.FileMode(436), modTime: time.Unix(1451931845, 0)}
a := &asset{bytes: bytes, info: info}
return a, nil
}
@ -89,12 +89,12 @@ func bundle_js_gz() (*asset, error) {
return nil, err
}
info := bindata_file_info{name: "bundle.js.gz", size: 114026, mode: os.FileMode(436), modTime: time.Unix(1451510920, 0)}
info := bindata_file_info{name: "bundle.js.gz", size: 114026, mode: os.FileMode(436), modTime: time.Unix(1451931845, 0)}
a := &asset{bytes: bytes, info: info}
return a, nil
}
var _config_default_toml = "\x70\x6f\x72\x74\x20\x3d\x20\x31\x33\x33\x37\x0a\x23\x20\x53\x70\x65\x63\x69\x66\x79\x69\x6e\x67\x20\x61\x20\x64\x6f\x6d\x61\x69\x6e\x20\x65\x6e\x61\x62\x6c\x65\x73\x20\x61\x75\x74\x6f\x6d\x61\x74\x69\x63\x20\x53\x53\x4c\x20\x74\x68\x72\x6f\x75\x67\x68\x20\x4c\x65\x74\x27\x73\x20\x45\x6e\x63\x72\x79\x70\x74\x0a\x64\x6f\x6d\x61\x69\x6e\x20\x3d\x20\x22\x77\x77\x77\x2e\x65\x78\x61\x6d\x70\x6c\x65\x2e\x63\x6f\x6d\x22\x0a\x0a\x5b\x68\x74\x74\x70\x73\x5d\x0a\x70\x6f\x72\x74\x20\x3d\x20\x34\x34\x33\x0a\x23\x20\x52\x65\x64\x69\x72\x65\x63\x74\x20\x61\x6c\x6c\x20\x68\x74\x74\x70\x20\x74\x72\x61\x66\x66\x69\x63\x20\x74\x6f\x20\x68\x74\x74\x70\x73\x0a\x72\x65\x64\x69\x72\x65\x63\x74\x20\x3d\x20\x74\x72\x75\x65\x0a"
var _config_default_toml = "\x70\x6f\x72\x74\x20\x3d\x20\x38\x30\x0a\x0a\x5b\x68\x74\x74\x70\x73\x5d\x0a\x65\x6e\x61\x62\x6c\x65\x64\x20\x3d\x20\x66\x61\x6c\x73\x65\x0a\x70\x6f\x72\x74\x20\x3d\x20\x34\x34\x33\x0a\x23\x20\x52\x65\x64\x69\x72\x65\x63\x74\x20\x61\x6c\x6c\x20\x68\x74\x74\x70\x20\x74\x72\x61\x66\x66\x69\x63\x20\x74\x6f\x20\x68\x74\x74\x70\x73\x0a\x72\x65\x64\x69\x72\x65\x63\x74\x20\x3d\x20\x74\x72\x75\x65\x0a\x23\x20\x50\x61\x74\x68\x20\x74\x6f\x20\x79\x6f\x75\x72\x20\x63\x65\x72\x74\x20\x61\x6e\x64\x20\x70\x72\x69\x76\x61\x74\x65\x20\x6b\x65\x79\x20\x69\x66\x20\x79\x6f\x75\x20\x61\x72\x65\x20\x6e\x6f\x74\x20\x75\x73\x69\x6e\x67\x0a\x23\x20\x74\x68\x65\x20\x4c\x65\x74\x27\x73\x20\x45\x6e\x63\x72\x79\x70\x74\x20\x69\x6e\x74\x65\x67\x72\x61\x74\x69\x6f\x6e\x0a\x63\x65\x72\x74\x20\x3d\x20\x22\x22\x0a\x6b\x65\x79\x20\x3d\x20\x22\x22\x0a\x0a\x5b\x6c\x65\x74\x73\x65\x6e\x63\x72\x79\x70\x74\x5d\x0a\x23\x20\x59\x6f\x75\x72\x20\x64\x6f\x6d\x61\x69\x6e\x20\x6f\x72\x20\x73\x75\x62\x64\x6f\x6d\x61\x69\x6e\x0a\x64\x6f\x6d\x61\x69\x6e\x20\x3d\x20\x22\x22\x0a\x23\x20\x41\x6e\x20\x65\x6d\x61\x69\x6c\x20\x61\x64\x64\x72\x65\x73\x73\x20\x6c\x65\x74\x73\x20\x79\x6f\x75\x20\x72\x65\x63\x6f\x76\x65\x72\x20\x79\x6f\x75\x72\x20\x61\x63\x63\x6f\x75\x6e\x74\x73\x20\x70\x72\x69\x76\x61\x74\x65\x20\x6b\x65\x79\x0a\x65\x6d\x61\x69\x6c\x20\x3d\x20\x22\x22\x0a\x23\x20\x54\x68\x65\x20\x70\x6f\x72\x74\x20\x4c\x65\x74\x27\x73\x20\x45\x6e\x63\x72\x79\x70\x74\x20\x6c\x69\x73\x74\x65\x6e\x73\x20\x6f\x6e\x2c\x20\x63\x6f\x6d\x6d\x65\x6e\x74\x20\x74\x68\x69\x73\x20\x6f\x75\x74\x20\x74\x6f\x20\x6c\x65\x74\x20\x69\x74\x20\x62\x69\x6e\x64\x0a\x23\x20\x74\x6f\x20\x70\x6f\x72\x74\x20\x38\x30\x20\x61\x73\x20\x6e\x65\x65\x64\x65\x64\x2c\x20\x64\x6f\x69\x6e\x67\x20\x73\x6f\x20\x6d\x65\x61\x6e\x73\x20\x64\x69\x73\x70\x61\x74\x63\x68\x20\x69\x74\x73\x65\x6c\x66\x20\x63\x61\x6e\x6e\x6f\x74\x20\x75\x73\x65\x20\x70\x6f\x72\x74\x20\x38\x30\x0a\x70\x6f\x72\x74\x20\x3d\x20\x35\x30\x30\x31\x0a\x23\x20\x48\x61\x76\x65\x20\x64\x69\x73\x70\x61\x74\x63\x68\x20\x70\x72\x6f\x78\x79\x20\x74\x72\x61\x66\x66\x69\x63\x20\x66\x72\x6f\x6d\x20\x70\x6f\x72\x74\x20\x38\x30\x20\x74\x6f\x20\x74\x68\x65\x20\x4c\x65\x74\x27\x73\x20\x45\x6e\x63\x72\x79\x70\x74\x20\x70\x6f\x72\x74\x0a\x70\x72\x6f\x78\x79\x20\x3d\x20\x74\x72\x75\x65\x0a\x0a\x23\x20\x4e\x6f\x74\x20\x69\x6d\x70\x6c\x65\x6d\x65\x6e\x74\x65\x64\x0a\x5b\x61\x75\x74\x68\x5d\x0a\x23\x20\x41\x6c\x6c\x6f\x77\x20\x75\x73\x61\x67\x65\x20\x77\x69\x74\x68\x6f\x75\x74\x20\x62\x65\x69\x6e\x67\x20\x6c\x6f\x67\x67\x65\x64\x20\x69\x6e\x2c\x20\x61\x6c\x6c\x20\x63\x68\x61\x6e\x6e\x65\x6c\x73\x20\x61\x6e\x64\x20\x73\x65\x74\x74\x69\x6e\x67\x73\x20\x67\x65\x74\x0a\x23\x20\x74\x72\x61\x6e\x73\x66\x65\x72\x72\x65\x64\x20\x77\x68\x65\x6e\x20\x6c\x6f\x67\x67\x69\x6e\x67\x20\x69\x6e\x20\x6f\x72\x20\x72\x65\x67\x69\x73\x74\x65\x72\x69\x6e\x67\x0a\x61\x6e\x6f\x6e\x79\x6d\x6f\x75\x73\x20\x3d\x20\x74\x72\x75\x65\x0a\x23\x20\x45\x6e\x61\x62\x6c\x65\x20\x75\x73\x65\x72\x6e\x61\x6d\x65\x2f\x70\x61\x73\x73\x77\x6f\x72\x64\x20\x6c\x6f\x67\x69\x6e\x0a\x6c\x6f\x67\x69\x6e\x20\x3d\x20\x74\x72\x75\x65\x0a\x23\x20\x45\x6e\x61\x62\x6c\x65\x20\x75\x73\x65\x72\x6e\x61\x6d\x65\x2f\x70\x61\x73\x73\x77\x6f\x72\x64\x20\x72\x65\x67\x69\x73\x74\x72\x61\x74\x69\x6f\x6e\x0a\x72\x65\x67\x69\x73\x74\x72\x61\x74\x69\x6f\x6e\x20\x3d\x20\x74\x72\x75\x65\x0a\x0a\x5b\x61\x75\x74\x68\x2e\x67\x69\x74\x68\x75\x62\x5d\x0a\x6b\x65\x79\x20\x3d\x20\x22\x22\x0a\x73\x65\x63\x72\x65\x74\x20\x3d\x20\x22\x22\x0a\x0a\x5b\x61\x75\x74\x68\x2e\x66\x61\x63\x65\x62\x6f\x6f\x6b\x5d\x0a\x6b\x65\x79\x20\x3d\x20\x22\x22\x0a\x73\x65\x63\x72\x65\x74\x20\x3d\x20\x22\x22\x0a\x0a\x5b\x61\x75\x74\x68\x2e\x67\x6f\x6f\x67\x6c\x65\x5d\x0a\x6b\x65\x79\x20\x3d\x20\x22\x22\x0a\x73\x65\x63\x72\x65\x74\x20\x3d\x20\x22\x22\x0a\x0a\x5b\x61\x75\x74\x68\x2e\x74\x77\x69\x74\x74\x65\x72\x5d\x0a\x6b\x65\x79\x20\x3d\x20\x22\x22\x0a\x73\x65\x63\x72\x65\x74\x20\x3d\x20\x22\x22\x0a"
func config_default_toml_bytes() ([]byte, error) {
return bindata_read(
@ -109,7 +109,7 @@ func config_default_toml() (*asset, error) {
return nil, err
}
info := bindata_file_info{name: "config.default.toml", size: 178, mode: os.FileMode(436), modTime: time.Unix(1451510900, 0)}
info := bindata_file_info{name: "config.default.toml", size: 981, mode: os.FileMode(436), modTime: time.Unix(1451931816, 0)}
a := &asset{bytes: bytes, info: info}
return a, nil
}
@ -129,7 +129,7 @@ func font_fontello_eot_gz() (*asset, error) {
return nil, err
}
info := bindata_file_info{name: "font/fontello.eot.gz", size: 3543, mode: os.FileMode(436), modTime: time.Unix(1451510920, 0)}
info := bindata_file_info{name: "font/fontello.eot.gz", size: 3543, mode: os.FileMode(436), modTime: time.Unix(1451931845, 0)}
a := &asset{bytes: bytes, info: info}
return a, nil
}
@ -149,7 +149,7 @@ func font_fontello_svg_gz() (*asset, error) {
return nil, err
}
info := bindata_file_info{name: "font/fontello.svg.gz", size: 1707, mode: os.FileMode(436), modTime: time.Unix(1451510920, 0)}
info := bindata_file_info{name: "font/fontello.svg.gz", size: 1707, mode: os.FileMode(436), modTime: time.Unix(1451931845, 0)}
a := &asset{bytes: bytes, info: info}
return a, nil
}
@ -169,7 +169,7 @@ func font_fontello_ttf_gz() (*asset, error) {
return nil, err
}
info := bindata_file_info{name: "font/fontello.ttf.gz", size: 3490, mode: os.FileMode(436), modTime: time.Unix(1451510920, 0)}
info := bindata_file_info{name: "font/fontello.ttf.gz", size: 3490, mode: os.FileMode(436), modTime: time.Unix(1451931845, 0)}
a := &asset{bytes: bytes, info: info}
return a, nil
}
@ -189,7 +189,7 @@ func font_fontello_woff_gz() (*asset, error) {
return nil, err
}
info := bindata_file_info{name: "font/fontello.woff.gz", size: 3701, mode: os.FileMode(436), modTime: time.Unix(1451510920, 0)}
info := bindata_file_info{name: "font/fontello.woff.gz", size: 3701, mode: os.FileMode(436), modTime: time.Unix(1451931845, 0)}
a := &asset{bytes: bytes, info: info}
return a, nil
}
@ -209,7 +209,7 @@ func index_html_gz() (*asset, error) {
return nil, err
}
info := bindata_file_info{name: "index.html.gz", size: 252, mode: os.FileMode(436), modTime: time.Unix(1451510920, 0)}
info := bindata_file_info{name: "index.html.gz", size: 252, mode: os.FileMode(436), modTime: time.Unix(1451931845, 0)}
a := &asset{bytes: bytes, info: info}
return a, nil
}

View File

@ -10,6 +10,6 @@ var clearCmd = &cobra.Command{
Use: "clear",
Short: "Clear all application data",
Run: func(cmd *cobra.Command, args []string) {
storage.Clear(appDir)
storage.Clear()
},
}

View File

@ -4,9 +4,10 @@ import (
"log"
"os"
"os/exec"
"path"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/spf13/cobra"
"github.com/khlieng/dispatch/storage"
)
var (
@ -15,7 +16,7 @@ var (
Short: "Edit config file",
Run: func(cmd *cobra.Command, args []string) {
if editor := findEditor(); editor != "" {
process := exec.Command(editor, path.Join(appDir, "config.toml"))
process := exec.Command(editor, storage.Path.Config())
process.Stdin = os.Stdin
process.Stdout = os.Stdout
process.Stderr = os.Stderr

View File

@ -1,12 +1,11 @@
package commands
import (
"fmt"
"io/ioutil"
"log"
"os"
"path"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/mitchellh/go-homedir"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/spf13/cobra"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/spf13/viper"
@ -15,49 +14,61 @@ import (
"github.com/khlieng/dispatch/storage"
)
var (
rootCmd = &cobra.Command{
Use: "dispatch",
Short: "Web-based IRC client in Go.",
Run: func(cmd *cobra.Command, args []string) {
storage.Initialize(appDir)
server.Run(viper.GetInt("port"))
},
const logo = `
____ _ _ _
| _ \ (_) ___ _ __ __ _ | |_ ___ | |__
| | | || |/ __|| '_ \ / _ || __|/ __|| '_ \
| |_| || |\__ \| |_) || (_| || |_| (__ | | | |
|____/ |_||___/| .__/ \__,_| \__|\___||_| |_|
|_|
v0.1
`
PersistentPreRun: func(cmd *cobra.Command, args []string) {
appDir = viper.GetString("dir")
var rootCmd = &cobra.Command{
Use: "dispatch",
Short: "Web-based IRC client in Go.",
Run: func(cmd *cobra.Command, args []string) {
storage.Initialize()
server.Run()
},
os.Mkdir(appDir, 0777)
os.Mkdir(path.Join(appDir, "logs"), 0777)
PersistentPreRun: func(cmd *cobra.Command, args []string) {
if cmd.Use == "dispatch" {
fmt.Println(logo)
}
initConfig()
storage.SetDirectory(viper.GetString("dir"))
viper.SetConfigName("config")
viper.AddConfigPath(appDir)
viper.ReadInConfig()
},
}
err := os.MkdirAll(storage.Path.Logs(), 0700)
if err != nil {
log.Fatal(err)
}
appDir string
)
initConfig()
func init() {
rootCmd.AddCommand(clearCmd)
rootCmd.AddCommand(configCmd)
rootCmd.Flags().IntP("port", "p", 1337, "port to listen on")
rootCmd.PersistentFlags().String("dir", defaultDir(), "directory to store config and data in")
viper.BindPFlag("port", rootCmd.Flags().Lookup("port"))
viper.BindPFlag("dir", rootCmd.PersistentFlags().Lookup("dir"))
viper.SetConfigName("config")
viper.AddConfigPath(storage.Path.Root())
viper.ReadInConfig()
},
}
func Execute() {
rootCmd.Execute()
}
func init() {
rootCmd.AddCommand(clearCmd)
rootCmd.AddCommand(configCmd)
rootCmd.Flags().IntP("port", "p", 80, "port to listen on")
rootCmd.PersistentFlags().String("dir", storage.DefaultDirectory(), "directory to store config and data in")
viper.BindPFlag("port", rootCmd.Flags().Lookup("port"))
viper.BindPFlag("dir", rootCmd.PersistentFlags().Lookup("dir"))
}
func initConfig() {
configPath := path.Join(appDir, "config.toml")
configPath := storage.Path.Config()
if _, err := os.Stat(configPath); os.IsNotExist(err) {
config, err := assets.Asset("config.default.toml")
@ -66,18 +77,11 @@ func initConfig() {
return
}
log.Println("Writing default config to", configPath)
err = ioutil.WriteFile(configPath, config, 0600)
if err != nil {
log.Println(err)
}
}
}
func defaultDir() string {
dir, err := homedir.Dir()
if err != nil {
log.Fatal(err)
}
return path.Join(dir, ".dispatch")
}

View File

@ -1 +1,48 @@
port = 1337
port = 80
[https]
enabled = false
port = 443
# Redirect all http traffic to https
redirect = true
# Path to your cert and private key if you are not using
# the Let's Encrypt integration
cert = ""
key = ""
[letsencrypt]
# Your domain or subdomain
domain = ""
# An email address lets you recover your accounts private key
email = ""
# The port Let's Encrypt listens on, comment this out to let it bind
# to port 80 as needed, doing so means dispatch itself cannot use port 80
port = 5001
# Have dispatch proxy traffic from port 80 to the Let's Encrypt port
proxy = true
# Not implemented
[auth]
# Allow usage without being logged in, all channels and settings get
# transferred when logging in or registering
anonymous = true
# Enable username/password login
login = true
# Enable username/password registration
registration = true
[auth.github]
key = ""
secret = ""
[auth.facebook]
key = ""
secret = ""
[auth.google]
key = ""
secret = ""
[auth.twitter]
key = ""
secret = ""

38
letsencrypt/directory.go Normal file
View File

@ -0,0 +1,38 @@
package letsencrypt
import (
"path/filepath"
)
type Directory string
func (d Directory) Domain(domain string) string {
return filepath.Join(string(d), "certs", domain)
}
func (d Directory) Cert(domain string) string {
return filepath.Join(d.Domain(domain), "cert.pem")
}
func (d Directory) Key(domain string) string {
return filepath.Join(d.Domain(domain), "key.pem")
}
func (d Directory) Meta(domain string) string {
return filepath.Join(d.Domain(domain), "metadata.json")
}
func (d Directory) User(email string) string {
if email == "" {
email = defaultUser
}
return filepath.Join(string(d), "users", email)
}
func (d Directory) UserRegistration(email string) string {
return filepath.Join(d.User(email), "registration.json")
}
func (d Directory) UserKey(email string) string {
return filepath.Join(d.User(email), "key.pem")
}

183
letsencrypt/letsencrypt.go Normal file
View File

@ -0,0 +1,183 @@
package letsencrypt
import (
"encoding/json"
"io/ioutil"
"os"
"time"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/xenolf/lego/acme"
)
const URL = "https://acme-v01.api.letsencrypt.org/directory"
const KeySize = 2048
var directory Directory
func Run(dir, domain, email, port string, onChange func()) (string, string, error) {
directory = Directory(dir)
user, err := getUser(email)
if err != nil {
return "", "", nil
}
client, err := acme.NewClient(URL, &user, KeySize)
client.ExcludeChallenges([]string{"tls-sni-01"})
client.SetHTTPPort(port)
if user.Registration == nil {
user.Registration, err = client.Register()
if err != nil {
return "", "", err
}
err = client.AgreeToTOS()
if err != nil {
return "", "", err
}
err = saveUser(user)
if err != nil {
return "", "", err
}
}
if certExists(domain) {
renew(client, domain)
} else {
err = obtain(client, domain)
if err != nil {
return "", "", err
}
}
go keepRenewed(client, domain, onChange)
return directory.Cert(domain), directory.Key(domain), nil
}
func obtain(client *acme.Client, domain string) error {
cert, errors := client.ObtainCertificate([]string{domain}, false)
if err := errors[domain]; err != nil {
if _, ok := err.(acme.TOSError); ok {
err := client.AgreeToTOS()
if err != nil {
return err
}
return obtain(client, domain)
}
return err
}
err := saveCert(cert)
if err != nil {
return err
}
return nil
}
func renew(client *acme.Client, domain string) bool {
cert, err := ioutil.ReadFile(directory.Cert(domain))
if err != nil {
return false
}
exp, err := acme.GetPEMCertExpiration(cert)
if err != nil {
return false
}
daysLeft := int(exp.Sub(time.Now().UTC()).Hours() / 24)
if daysLeft <= 30 {
metaBytes, err := ioutil.ReadFile(directory.Meta(domain))
if err != nil {
return false
}
key, err := ioutil.ReadFile(directory.Key(domain))
if err != nil {
return false
}
var meta acme.CertificateResource
err = json.Unmarshal(metaBytes, &meta)
if err != nil {
return false
}
meta.Certificate = cert
meta.PrivateKey = key
Renew:
newMeta, err := client.RenewCertificate(meta, false)
if err != nil {
if _, ok := err.(acme.TOSError); ok {
err := client.AgreeToTOS()
if err != nil {
return false
}
goto Renew
}
return false
}
err = saveCert(newMeta)
if err != nil {
return false
}
return true
}
return false
}
func keepRenewed(client *acme.Client, domain string, onChange func()) {
for {
time.Sleep(24 * time.Hour)
if renew(client, domain) {
onChange()
}
}
}
func certExists(domain string) bool {
if _, err := os.Stat(directory.Cert(domain)); err != nil {
return false
}
if _, err := os.Stat(directory.Key(domain)); err != nil {
return false
}
return true
}
func saveCert(cert acme.CertificateResource) error {
err := os.MkdirAll(directory.Domain(cert.Domain), 0700)
if err != nil {
return err
}
err = ioutil.WriteFile(directory.Cert(cert.Domain), cert.Certificate, 0600)
if err != nil {
return err
}
err = ioutil.WriteFile(directory.Key(cert.Domain), cert.PrivateKey, 0600)
if err != nil {
return err
}
jsonBytes, err := json.MarshalIndent(&cert, "", " ")
if err != nil {
return err
}
err = ioutil.WriteFile(directory.Meta(cert.Domain), jsonBytes, 0600)
if err != nil {
return err
}
return nil
}

106
letsencrypt/user.go Normal file
View File

@ -0,0 +1,106 @@
package letsencrypt
import (
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"encoding/json"
"encoding/pem"
"io/ioutil"
"os"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/xenolf/lego/acme"
)
const defaultUser = "default"
type User struct {
Email string
Registration *acme.RegistrationResource
key *rsa.PrivateKey
}
func (u User) GetEmail() string {
return u.Email
}
func (u User) GetRegistration() *acme.RegistrationResource {
return u.Registration
}
func (u User) GetPrivateKey() *rsa.PrivateKey {
return u.key
}
func newUser(email string) (User, error) {
var err error
user := User{Email: email}
user.key, err = rsa.GenerateKey(rand.Reader, KeySize)
if err != nil {
return user, err
}
return user, nil
}
func getUser(email string) (User, error) {
var user User
reg, err := os.Open(directory.UserRegistration(email))
if err != nil {
if os.IsNotExist(err) {
return newUser(email)
}
return user, err
}
defer reg.Close()
err = json.NewDecoder(reg).Decode(&user)
if err != nil {
return user, err
}
user.key, err = loadRSAPrivateKey(directory.UserKey(email))
if err != nil {
return user, err
}
return user, nil
}
func saveUser(user User) error {
err := os.MkdirAll(directory.User(user.Email), 0700)
if err != nil {
return err
}
err = saveRSAPrivateKey(user.key, directory.UserKey(user.Email))
if err != nil {
return err
}
jsonBytes, err := json.MarshalIndent(&user, "", " ")
if err != nil {
return err
}
return ioutil.WriteFile(directory.UserRegistration(user.Email), jsonBytes, 0600)
}
func loadRSAPrivateKey(file string) (*rsa.PrivateKey, error) {
keyBytes, err := ioutil.ReadFile(file)
if err != nil {
return nil, err
}
keyBlock, _ := pem.Decode(keyBytes)
return x509.ParsePKCS1PrivateKey(keyBlock.Bytes)
}
func saveRSAPrivateKey(key *rsa.PrivateKey, file string) error {
pemKey := pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(key)}
keyOut, err := os.Create(file)
if err != nil {
return err
}
defer keyOut.Close()
return pem.Encode(keyOut, &pemKey)
}

82
server/https.go Normal file
View File

@ -0,0 +1,82 @@
package server
import (
"crypto/tls"
"net"
"net/http"
"os"
"time"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/spf13/viper"
)
type restartableHTTPS struct {
listener net.Listener
handler http.Handler
addr string
cert string
key string
}
func (r *restartableHTTPS) start() error {
var err error
config := &tls.Config{
NextProtos: []string{"http/1.1"},
Certificates: make([]tls.Certificate, 1),
}
config.Certificates[0], err = tls.LoadX509KeyPair(r.cert, r.key)
if err != nil {
return err
}
ln, err := net.Listen("tcp", r.addr)
if err != nil {
return err
}
r.listener = tls.NewListener(tcpKeepAliveListener{ln.(*net.TCPListener)}, config)
return http.Serve(r.listener, r.handler)
}
func (r *restartableHTTPS) stop() {
r.listener.Close()
}
func (r *restartableHTTPS) restart() {
r.stop()
go r.start()
}
type tcpKeepAliveListener struct {
*net.TCPListener
}
func (ln tcpKeepAliveListener) Accept() (c net.Conn, err error) {
tc, err := ln.AcceptTCP()
if err != nil {
return
}
tc.SetKeepAlive(true)
tc.SetKeepAlivePeriod(3 * time.Minute)
return tc, nil
}
func certExists() bool {
cert := viper.GetString("https.cert")
key := viper.GetString("https.key")
if cert == "" || key == "" {
return false
}
if _, err := os.Stat(cert); err != nil {
return false
}
if _, err := os.Stat(key); err != nil {
return false
}
return true
}

36
server/irc.go Normal file
View File

@ -0,0 +1,36 @@
package server
import (
"github.com/khlieng/dispatch/irc"
"github.com/khlieng/dispatch/storage"
)
func reconnectIRC() {
for _, user := range storage.LoadUsers() {
session := NewSession()
session.user = user
sessions[user.UUID] = session
go session.write()
channels := user.GetChannels()
for _, server := range user.GetServers() {
i := irc.NewClient(server.Nick, server.Username)
i.TLS = server.TLS
i.Password = server.Password
i.Realname = server.Realname
i.Connect(server.Address)
session.setIRC(i.Host, i)
go newIRCHandler(i, session).run()
var joining []string
for _, channel := range channels {
if channel.Server == server.Address {
joining = append(joining, channel.Name)
}
}
i.Join(joining...)
}
}
}

View File

@ -4,7 +4,6 @@ import (
"io/ioutil"
"log"
"os"
"path"
"testing"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/stretchr/testify/assert"
@ -21,8 +20,9 @@ func TestMain(m *testing.M) {
log.Fatal(err)
}
os.Mkdir(path.Join(tempdir, "logs"), 0777)
storage.Initialize(tempdir)
storage.SetDirectory(tempdir)
os.MkdirAll(storage.Path.Logs(), 0700)
storage.Initialize()
user = storage.NewUser("uuid")
channelStore = storage.NewChannelStore()

View File

@ -2,13 +2,17 @@ package server
import (
"log"
"net"
"net/http"
"strconv"
"net/http/httputil"
"net/url"
"strings"
"sync"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/gorilla/websocket"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/spf13/viper"
"github.com/khlieng/dispatch/irc"
"github.com/khlieng/dispatch/letsencrypt"
"github.com/khlieng/dispatch/storage"
)
@ -26,21 +30,66 @@ var (
}
)
func Run(port int) {
func Run() {
defer storage.Close()
channelStore = storage.NewChannelStore()
sessions = make(map[string]*Session)
reconnect()
reconnectIRC()
startHTTP()
log.Println("Listening on port", port)
log.Fatal(http.ListenAndServe(":"+strconv.Itoa(port), handler{}))
select {}
}
type handler struct{}
func startHTTP() {
port := viper.GetString("port")
func (h handler) ServeHTTP(w http.ResponseWriter, r *http.Request) {
if viper.GetBool("https.enabled") {
var err error
portHTTPS := viper.GetString("https.port")
redirect := viper.GetBool("https.redirect")
https := restartableHTTPS{
addr: ":" + portHTTPS,
handler: http.HandlerFunc(serve),
}
if viper.GetBool("https.redirect") {
log.Println("[HTTP] Listening on port", port, "(HTTPS Redirect)")
go http.ListenAndServe(":"+port, createHTTPSRedirect(portHTTPS))
}
if certExists() {
https.cert = viper.GetString("https.cert")
https.key = viper.GetString("https.key")
} else if domain := viper.GetString("letsencrypt.domain"); domain != "" {
dir := storage.Path.LetsEncrypt()
email := viper.GetString("letsencrypt.email")
lePort := viper.GetString("letsencrypt.port")
if viper.GetBool("letsencrypt.proxy") && lePort != "" && (port != "80" || !redirect) {
log.Println("[HTTP] Listening on port 80 (Let's Encrypt Proxy))")
go http.ListenAndServe(":80", http.HandlerFunc(letsEncryptProxy))
}
https.cert, https.key, err = letsencrypt.Run(dir, domain, email, lePort, https.restart)
if err != nil {
log.Fatal(err)
}
} else {
log.Fatal("Could not locate SSL certificate or private key")
}
log.Println("[HTTPS] Listening on port", portHTTPS)
https.start()
} else {
log.Println("[HTTP] Listening on port", port)
log.Fatal(http.ListenAndServe(":"+port, http.HandlerFunc(serve)))
}
}
func serve(w http.ResponseWriter, r *http.Request) {
if r.Method != "GET" {
return
}
@ -65,32 +114,39 @@ func upgradeWS(w http.ResponseWriter, r *http.Request) {
}
}
func reconnect() {
for _, user := range storage.LoadUsers() {
session := NewSession()
session.user = user
sessions[user.UUID] = session
go session.write()
channels := user.GetChannels()
for _, server := range user.GetServers() {
i := irc.NewClient(server.Nick, server.Username)
i.TLS = server.TLS
i.Password = server.Password
i.Realname = server.Realname
i.Connect(server.Address)
session.setIRC(i.Host, i)
go newIRCHandler(i, session).run()
var joining []string
for _, channel := range channels {
if channel.Server == server.Address {
joining = append(joining, channel.Name)
}
}
i.Join(joining...)
func createHTTPSRedirect(portHTTPS string) http.HandlerFunc {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if strings.HasPrefix(r.URL.Path, "/.well-known/acme-challenge") {
letsEncryptProxy(w, r)
return
}
}
host, _, err := net.SplitHostPort(r.Host)
if err != nil {
host = r.Host
}
u := url.URL{
Scheme: "https",
Host: net.JoinHostPort(host, portHTTPS),
Path: r.RequestURI,
}
w.Header().Set("Location", u.String())
w.WriteHeader(http.StatusMovedPermanently)
})
}
func letsEncryptProxy(w http.ResponseWriter, r *http.Request) {
host, _, err := net.SplitHostPort(r.Host)
if err != nil {
host = r.Host
}
upstream := &url.URL{
Scheme: "http",
Host: net.JoinHostPort(host, viper.GetString("letsencrypt.port")),
}
httputil.NewSingleHostReverseProxy(upstream).ServeHTTP(w, r)
}

48
storage/directory.go Normal file
View File

@ -0,0 +1,48 @@
package storage
import (
"path/filepath"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/mitchellh/go-homedir"
)
var Path directory
func SetDirectory(dir string) {
Path = directory(dir)
}
func DefaultDirectory() string {
home, _ := homedir.Dir()
return filepath.Join(home, ".dispatch")
}
type directory string
func (d directory) Root() string {
return string(d)
}
func (d directory) LetsEncrypt() string {
return filepath.Join(d.Root(), "letsencrypt")
}
func (d directory) Logs() string {
return filepath.Join(d.Root(), "logs")
}
func (d directory) Log(userID string) string {
return filepath.Join(d.Logs(), userID+".log")
}
func (d directory) Index(userID string) string {
return filepath.Join(d.Logs(), userID+".idx")
}
func (d directory) Config() string {
return filepath.Join(d.Root(), "config.toml")
}
func (d directory) Database() string {
return filepath.Join(d.Root(), "dispatch.db")
}

View File

@ -3,7 +3,6 @@ package storage
import (
"log"
"os"
"path"
"github.com/khlieng/dispatch/Godeps/_workspace/src/github.com/boltdb/bolt"
)
@ -18,15 +17,13 @@ var (
bucketMessages = []byte("Messages")
)
func Initialize(dir string) {
func Initialize() {
log.Println("Storing data at", Path.Root())
var err error
appDir = dir
log.Println("Storing data at", dir)
db, err = bolt.Open(path.Join(dir, "data.db"), 0600, nil)
db, err = bolt.Open(Path.Database(), 0600, nil)
if err != nil {
log.Fatal("Could not open database file")
log.Fatal("Could not open database:", err)
}
db.Update(func(tx *bolt.Tx) error {
@ -42,7 +39,7 @@ func Close() {
db.Close()
}
func Clear(dir string) {
os.RemoveAll(path.Join(dir, "logs"))
os.Remove(path.Join(dir, "data.db"))
func Clear() {
os.RemoveAll(Path.Logs())
os.Remove(Path.Database())
}

View File

@ -4,7 +4,6 @@ import (
"bytes"
"encoding/json"
"log"
"path"
"strconv"
"strings"
"time"
@ -313,7 +312,7 @@ func (u *User) Close() {
func (u *User) openMessageLog() {
var err error
u.messageLog, err = bolt.Open(path.Join(appDir, "logs", u.UUID+"_log"), 0600, nil)
u.messageLog, err = bolt.Open(Path.Log(u.UUID), 0600, nil)
if err != nil {
log.Fatal(err)
}
@ -324,7 +323,7 @@ func (u *User) openMessageLog() {
return nil
})
indexPath := path.Join(appDir, "logs", u.UUID+"_index")
indexPath := Path.Index(u.UUID)
u.messageIndex, err = bleve.Open(indexPath)
if err == bleve.ErrorIndexPathDoesNotExist {
mapping := bleve.NewIndexMapping()