Upgrade server dependencies, manage them with govendor

This commit is contained in:
Ken-Håvard Lieng 2017-04-18 03:02:51 +02:00
parent ebee2746d6
commit 971278e7e5
1748 changed files with 196165 additions and 194500 deletions

27
vendor/golang.org/x/text/LICENSE generated vendored Normal file
View file

@ -0,0 +1,27 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/text/PATENTS generated vendored Normal file
View file

@ -0,0 +1,22 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

View file

@ -1,37 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package transform_test
import (
"fmt"
"unicode"
"golang.org/x/text/transform"
"golang.org/x/text/unicode/norm"
)
func ExampleRemoveFunc() {
input := []byte(`tschüß; до свидания`)
b := make([]byte, len(input))
t := transform.RemoveFunc(unicode.IsSpace)
n, _, _ := t.Transform(b, input, true)
fmt.Println(string(b[:n]))
t = transform.RemoveFunc(func(r rune) bool {
return !unicode.Is(unicode.Latin, r)
})
n, _, _ = t.Transform(b, input, true)
fmt.Println(string(b[:n]))
n, _, _ = t.Transform(b, norm.NFD.Bytes(input), true)
fmt.Println(string(b[:n]))
// Output:
// tschüß;досвидания
// tschüß
// tschuß
}

View file

@ -24,6 +24,10 @@ var (
// complete the transformation.
ErrShortSrc = errors.New("transform: short source buffer")
// ErrEndOfSpan means that the input and output (the transformed input)
// are not identical.
ErrEndOfSpan = errors.New("transform: input and output are not identical")
// errInconsistentByteCount means that Transform returned success (nil
// error) but also returned nSrc inconsistent with the src argument.
errInconsistentByteCount = errors.New("transform: inconsistent byte count returned")
@ -60,6 +64,41 @@ type Transformer interface {
Reset()
}
// SpanningTransformer extends the Transformer interface with a Span method
// that determines how much of the input already conforms to the Transformer.
type SpanningTransformer interface {
Transformer
// Span returns a position in src such that transforming src[:n] results in
// identical output src[:n] for these bytes. It does not necessarily return
// the largest such n. The atEOF argument tells whether src represents the
// last bytes of the input.
//
// Callers should always account for the n bytes consumed before
// considering the error err.
//
// A nil error means that all input bytes are known to be identical to the
// output produced by the Transformer. A nil error can be be returned
// regardless of whether atEOF is true. If err is nil, then then n must
// equal len(src); the converse is not necessarily true.
//
// ErrEndOfSpan means that the Transformer output may differ from the
// input after n bytes. Note that n may be len(src), meaning that the output
// would contain additional bytes after otherwise identical output.
// ErrShortSrc means that src had insufficient data to determine whether the
// remaining bytes would change. Other than the error conditions listed
// here, implementations are free to report other errors that arise.
//
// Calling Span can modify the Transformer state as a side effect. In
// effect, it does the transformation just as calling Transform would, only
// without copying to a destination buffer and only up to a point it can
// determine the input and output bytes are the same. This is obviously more
// limited than calling Transform, but can be more efficient in terms of
// copying and allocating buffers. Calls to Span and Transform may be
// interleaved.
Span(src []byte, atEOF bool) (n int, err error)
}
// NopResetter can be embedded by implementations of Transformer to add a nop
// Reset method.
type NopResetter struct{}
@ -207,7 +246,9 @@ func (w *Writer) Write(data []byte) (n int, err error) {
return n, werr
}
src = src[nSrc:]
if w.n > 0 && len(src) <= n {
if w.n == 0 {
n += nSrc
} else if len(src) <= n {
// Enough bytes from w.src have been consumed. We make src point
// to data instead to reduce the copying.
w.n = 0
@ -216,35 +257,46 @@ func (w *Writer) Write(data []byte) (n int, err error) {
if n < len(data) && (err == nil || err == ErrShortSrc) {
continue
}
} else {
n += nSrc
}
switch {
case err == ErrShortDst && (nDst > 0 || nSrc > 0):
case err == ErrShortSrc && len(src) < len(w.src):
m := copy(w.src, src)
// If w.n > 0, bytes from data were already copied to w.src and n
// was already set to the number of bytes consumed.
if w.n == 0 {
n += m
switch err {
case ErrShortDst:
// This error is okay as long as we are making progress.
if nDst > 0 || nSrc > 0 {
continue
}
case ErrShortSrc:
if len(src) < len(w.src) {
m := copy(w.src, src)
// If w.n > 0, bytes from data were already copied to w.src and n
// was already set to the number of bytes consumed.
if w.n == 0 {
n += m
}
w.n = m
err = nil
} else if nDst > 0 || nSrc > 0 {
// Not enough buffer to store the remainder. Keep processing as
// long as there is progress. Without this case, transforms that
// require a lookahead larger than the buffer may result in an
// error. This is not something one may expect to be common in
// practice, but it may occur when buffers are set to small
// sizes during testing.
continue
}
case nil:
if w.n > 0 {
err = errInconsistentByteCount
}
w.n = m
return n, nil
case err == nil && w.n > 0:
return n, errInconsistentByteCount
default:
return n, err
}
return n, err
}
}
// Close implements the io.Closer interface.
func (w *Writer) Close() error {
for src := w.src[:w.n]; len(src) > 0; {
src := w.src[:w.n]
for {
nDst, nSrc, err := w.t.Transform(w.dst, src, true)
if nDst == 0 {
return err
}
if _, werr := w.w.Write(w.dst[:nDst]); werr != nil {
return werr
}
@ -253,7 +305,6 @@ func (w *Writer) Close() error {
}
src = src[nSrc:]
}
return nil
}
type nop struct{ NopResetter }
@ -266,6 +317,10 @@ func (nop) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
return n, n, err
}
func (nop) Span(src []byte, atEOF bool) (n int, err error) {
return len(src), nil
}
type discard struct{ NopResetter }
func (discard) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
@ -277,8 +332,8 @@ var (
// by consuming all bytes and writing nothing.
Discard Transformer = discard{}
// Nop is a Transformer that copies src to dst.
Nop Transformer = nop{}
// Nop is a SpanningTransformer that copies src to dst.
Nop SpanningTransformer = nop{}
)
// chain is a sequence of links. A chain with N Transformers has N+1 links and
@ -346,6 +401,8 @@ func (c *chain) Reset() {
}
}
// TODO: make chain use Span (is going to be fun to implement!)
// Transform applies the transformers of c in sequence.
func (c *chain) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
// Set up src and dst in the chain.
@ -436,8 +493,7 @@ func (c *chain) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err erro
return dstL.n, srcL.p, err
}
// RemoveFunc returns a Transformer that removes from the input all runes r for
// which f(r) is true. Illegal bytes in the input are replaced by RuneError.
// Deprecated: use runes.Remove instead.
func RemoveFunc(f func(r rune) bool) Transformer {
return removeF(f)
}
@ -493,7 +549,9 @@ func (t removeF) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err err
// of b to the start of the new slice.
func grow(b []byte, n int) []byte {
m := len(b)
if m <= 256 {
if m <= 32 {
m = 64
} else if m <= 256 {
m *= 2
} else {
m += m >> 1
@ -508,11 +566,14 @@ const initialBufSize = 128
// String returns a string with the result of converting s[:n] using t, where
// n <= len(s). If err == nil, n will be len(s). It calls Reset on t.
func String(t Transformer, s string) (result string, n int, err error) {
if s == "" {
return "", 0, nil
}
t.Reset()
if s == "" {
// Fast path for the common case for empty input. Results in about a
// 86% reduction of running time for BenchmarkStringLowerEmpty.
if _, _, err := t.Transform(nil, nil, true); err == nil {
return "", 0, nil
}
}
// Allocate only once. Note that both dst and src escape when passed to
// Transform.
@ -520,74 +581,88 @@ func String(t Transformer, s string) (result string, n int, err error) {
dst := buf[:initialBufSize:initialBufSize]
src := buf[initialBufSize : 2*initialBufSize]
// Avoid allocation if the transformed string is identical to the original.
// After this loop, pDst will point to the furthest point in s for which it
// could be detected that t gives equal results, src[:nSrc] will
// indicated the last processed chunk of s for which the output is not equal
// and dst[:nDst] will be the transform of this chunk.
var nDst, nSrc int
pDst := 0 // Used as index in both src and dst in this loop.
// The input string s is transformed in multiple chunks (starting with a
// chunk size of initialBufSize). nDst and nSrc are per-chunk (or
// per-Transform-call) indexes, pDst and pSrc are overall indexes.
nDst, nSrc := 0, 0
pDst, pSrc := 0, 0
// pPrefix is the length of a common prefix: the first pPrefix bytes of the
// result will equal the first pPrefix bytes of s. It is not guaranteed to
// be the largest such value, but if pPrefix, len(result) and len(s) are
// all equal after the final transform (i.e. calling Transform with atEOF
// being true returned nil error) then we don't need to allocate a new
// result string.
pPrefix := 0
for {
n := copy(src, s[pDst:])
nDst, nSrc, err = t.Transform(dst, src[:n], pDst+n == len(s))
// Invariant: pDst == pPrefix && pSrc == pPrefix.
// Note 1: we will not enter the loop with pDst == len(s) and we will
// not end the loop with it either. So if nSrc is 0, this means there is
// some kind of error from which we cannot recover given the current
// buffer sizes. We will give up in this case.
// Note 2: it is not entirely correct to simply do a bytes.Equal as
// a Transformer may buffer internally. It will work in most cases,
// though, and no harm is done if it doesn't work.
// TODO: let transformers implement an optional Spanner interface, akin
// to norm's QuickSpan. This would even allow us to avoid any allocation.
if nSrc == 0 || !bytes.Equal(dst[:nDst], src[:nSrc]) {
break
}
if pDst += nDst; pDst == len(s) {
return s, pDst, nil
}
}
// Move the bytes seen so far to dst.
pSrc := pDst + nSrc
if pDst+nDst <= initialBufSize {
copy(dst[pDst:], dst[:nDst])
} else {
b := make([]byte, len(s)+nDst-nSrc)
copy(b[pDst:], dst[:nDst])
dst = b
}
copy(dst, s[:pDst])
pDst += nDst
if err != nil && err != ErrShortDst && err != ErrShortSrc {
return string(dst[:pDst]), pSrc, err
}
// Complete the string with the remainder.
for {
n := copy(src, s[pSrc:])
nDst, nSrc, err = t.Transform(dst[pDst:], src[:n], pSrc+n == len(s))
nDst, nSrc, err = t.Transform(dst, src[:n], pSrc+n == len(s))
pDst += nDst
pSrc += nSrc
switch err {
case nil:
if pSrc == len(s) {
return string(dst[:pDst]), pSrc, nil
// TODO: let transformers implement an optional Spanner interface, akin
// to norm's QuickSpan. This would even allow us to avoid any allocation.
if !bytes.Equal(dst[:nDst], src[:nSrc]) {
break
}
pPrefix = pSrc
if err == ErrShortDst {
// A buffer can only be short if a transformer modifies its input.
break
} else if err == ErrShortSrc {
if nSrc == 0 {
// No progress was made.
break
}
case ErrShortDst:
// Do not grow as long as we can make progress. This may avoid
// excessive allocations.
// Equal so far and !atEOF, so continue checking.
} else if err != nil || pPrefix == len(s) {
return string(s[:pPrefix]), pPrefix, err
}
}
// Post-condition: pDst == pPrefix + nDst && pSrc == pPrefix + nSrc.
// We have transformed the first pSrc bytes of the input s to become pDst
// transformed bytes. Those transformed bytes are discontiguous: the first
// pPrefix of them equal s[:pPrefix] and the last nDst of them equal
// dst[:nDst]. We copy them around, into a new dst buffer if necessary, so
// that they become one contiguous slice: dst[:pDst].
if pPrefix != 0 {
newDst := dst
if pDst > len(newDst) {
newDst = make([]byte, len(s)+nDst-nSrc)
}
copy(newDst[pPrefix:pDst], dst[:nDst])
copy(newDst[:pPrefix], s[:pPrefix])
dst = newDst
}
// Prevent duplicate Transform calls with atEOF being true at the end of
// the input. Also return if we have an unrecoverable error.
if (err == nil && pSrc == len(s)) ||
(err != nil && err != ErrShortDst && err != ErrShortSrc) {
return string(dst[:pDst]), pSrc, err
}
// Transform the remaining input, growing dst and src buffers as necessary.
for {
n := copy(src, s[pSrc:])
nDst, nSrc, err := t.Transform(dst[pDst:], src[:n], pSrc+n == len(s))
pDst += nDst
pSrc += nSrc
// If we got ErrShortDst or ErrShortSrc, do not grow as long as we can
// make progress. This may avoid excessive allocations.
if err == ErrShortDst {
if nDst == 0 {
dst = grow(dst, pDst)
}
case ErrShortSrc:
} else if err == ErrShortSrc {
if nSrc == 0 {
src = grow(src, 0)
}
default:
} else if err != nil || pSrc == len(s) {
return string(dst[:pDst]), pSrc, err
}
}

File diff suppressed because it is too large Load diff

View file

@ -1,130 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "testing"
// TestCase is used for most tests.
type TestCase struct {
in []rune
out []rune
}
func runTests(t *testing.T, name string, fm Form, tests []TestCase) {
rb := reorderBuffer{}
rb.init(fm, nil)
for i, test := range tests {
rb.setFlusher(nil, appendFlush)
for j, rune := range test.in {
b := []byte(string(rune))
src := inputBytes(b)
info := rb.f.info(src, 0)
if j == 0 {
rb.ss.first(info)
} else {
rb.ss.next(info)
}
if rb.insertFlush(src, 0, info) < 0 {
t.Errorf("%s:%d: insert failed for rune %d", name, i, j)
}
}
rb.doFlush()
was := string(rb.out)
want := string(test.out)
if len(was) != len(want) {
t.Errorf("%s:%d: length = %d; want %d", name, i, len(was), len(want))
}
if was != want {
k, pfx := pidx(was, want)
t.Errorf("%s:%d: \nwas %s%+q; \nwant %s%+q", name, i, pfx, was[k:], pfx, want[k:])
}
}
}
func TestFlush(t *testing.T) {
const (
hello = "Hello "
world = "world!"
)
buf := make([]byte, maxByteBufferSize)
p := copy(buf, hello)
out := buf[p:]
rb := reorderBuffer{}
rb.initString(NFC, world)
if i := rb.flushCopy(out); i != 0 {
t.Errorf("wrote bytes on flush of empty buffer. (len(out) = %d)", i)
}
for i := range world {
// No need to set streamSafe values for this test.
rb.insertFlush(rb.src, i, rb.f.info(rb.src, i))
n := rb.flushCopy(out)
out = out[n:]
p += n
}
was := buf[:p]
want := hello + world
if string(was) != want {
t.Errorf(`output after flush was "%s"; want "%s"`, string(was), want)
}
if rb.nrune != 0 {
t.Errorf("non-null size of info buffer (rb.nrune == %d)", rb.nrune)
}
if rb.nbyte != 0 {
t.Errorf("non-null size of byte buffer (rb.nbyte == %d)", rb.nbyte)
}
}
var insertTests = []TestCase{
{[]rune{'a'}, []rune{'a'}},
{[]rune{0x300}, []rune{0x300}},
{[]rune{0x300, 0x316}, []rune{0x316, 0x300}}, // CCC(0x300)==230; CCC(0x316)==220
{[]rune{0x316, 0x300}, []rune{0x316, 0x300}},
{[]rune{0x41, 0x316, 0x300}, []rune{0x41, 0x316, 0x300}},
{[]rune{0x41, 0x300, 0x316}, []rune{0x41, 0x316, 0x300}},
{[]rune{0x300, 0x316, 0x41}, []rune{0x316, 0x300, 0x41}},
{[]rune{0x41, 0x300, 0x40, 0x316}, []rune{0x41, 0x300, 0x40, 0x316}},
}
func TestInsert(t *testing.T) {
runTests(t, "TestInsert", NFD, insertTests)
}
var decompositionNFDTest = []TestCase{
{[]rune{0xC0}, []rune{0x41, 0x300}},
{[]rune{0xAC00}, []rune{0x1100, 0x1161}},
{[]rune{0x01C4}, []rune{0x01C4}},
{[]rune{0x320E}, []rune{0x320E}},
{[]rune("음ẻ과"), []rune{0x110B, 0x1173, 0x11B7, 0x65, 0x309, 0x1100, 0x116A}},
}
var decompositionNFKDTest = []TestCase{
{[]rune{0xC0}, []rune{0x41, 0x300}},
{[]rune{0xAC00}, []rune{0x1100, 0x1161}},
{[]rune{0x01C4}, []rune{0x44, 0x5A, 0x030C}},
{[]rune{0x320E}, []rune{0x28, 0x1100, 0x1161, 0x29}},
}
func TestDecomposition(t *testing.T) {
runTests(t, "TestDecompositionNFD", NFD, decompositionNFDTest)
runTests(t, "TestDecompositionNFKD", NFKD, decompositionNFKDTest)
}
var compositionTest = []TestCase{
{[]rune{0x41, 0x300}, []rune{0xC0}},
{[]rune{0x41, 0x316}, []rune{0x41, 0x316}},
{[]rune{0x41, 0x300, 0x35D}, []rune{0xC0, 0x35D}},
{[]rune{0x41, 0x316, 0x300}, []rune{0xC0, 0x316}},
// blocking starter
{[]rune{0x41, 0x316, 0x40, 0x300}, []rune{0x41, 0x316, 0x40, 0x300}},
{[]rune{0x1100, 0x1161}, []rune{0xAC00}},
// parenthesized Hangul, alternate between ASCII and Hangul.
{[]rune{0x28, 0x1100, 0x1161, 0x29}, []rune{0x28, 0xAC00, 0x29}},
}
func TestComposition(t *testing.T) {
runTests(t, "TestComposition", NFC, compositionTest)
}

View file

@ -1,82 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm_test
import (
"bytes"
"fmt"
"unicode/utf8"
"golang.org/x/text/unicode/norm"
)
// EqualSimple uses a norm.Iter to compare two non-normalized
// strings for equivalence.
func EqualSimple(a, b string) bool {
var ia, ib norm.Iter
ia.InitString(norm.NFKD, a)
ib.InitString(norm.NFKD, b)
for !ia.Done() && !ib.Done() {
if !bytes.Equal(ia.Next(), ib.Next()) {
return false
}
}
return ia.Done() && ib.Done()
}
// FindPrefix finds the longest common prefix of ASCII characters
// of a and b.
func FindPrefix(a, b string) int {
i := 0
for ; i < len(a) && i < len(b) && a[i] < utf8.RuneSelf && a[i] == b[i]; i++ {
}
return i
}
// EqualOpt is like EqualSimple, but optimizes the special
// case for ASCII characters.
func EqualOpt(a, b string) bool {
n := FindPrefix(a, b)
a, b = a[n:], b[n:]
var ia, ib norm.Iter
ia.InitString(norm.NFKD, a)
ib.InitString(norm.NFKD, b)
for !ia.Done() && !ib.Done() {
if !bytes.Equal(ia.Next(), ib.Next()) {
return false
}
if n := int64(FindPrefix(a[ia.Pos():], b[ib.Pos():])); n != 0 {
ia.Seek(n, 1)
ib.Seek(n, 1)
}
}
return ia.Done() && ib.Done()
}
var compareTests = []struct{ a, b string }{
{"aaa", "aaa"},
{"aaa", "aab"},
{"a\u0300a", "\u00E0a"},
{"a\u0300\u0320b", "a\u0320\u0300b"},
{"\u1E0A\u0323", "\x44\u0323\u0307"},
// A character that decomposes into multiple segments
// spans several iterations.
{"\u3304", "\u30A4\u30CB\u30F3\u30AF\u3099"},
}
func ExampleIter() {
for i, t := range compareTests {
r0 := EqualSimple(t.a, t.b)
r1 := EqualOpt(t.a, t.b)
fmt.Printf("%d: %v %v\n", i, r0, r1)
}
// Output:
// 0: true true
// 1: false false
// 2: true true
// 3: true true
// 4: true true
// 5: true true
}

View file

@ -10,7 +10,7 @@ package norm
// and its corresponding decomposing form share the same trie. Each trie maps
// a rune to a uint16. The values take two forms. For v >= 0x8000:
// bits
// 15: 1 (inverse of NFD_QD bit of qcInfo)
// 15: 1 (inverse of NFD_QC bit of qcInfo)
// 13..7: qcInfo (see below). isYesD is always true (no decompostion).
// 6..0: ccc (compressed CCC value).
// For v < 0x8000, the respective rune has a decomposition and v is an index
@ -56,28 +56,31 @@ type formInfo struct {
nextMain iterFunc
}
var formTable []*formInfo
func init() {
formTable = make([]*formInfo, 4)
for i := range formTable {
f := &formInfo{}
formTable[i] = f
f.form = Form(i)
if Form(i) == NFKD || Form(i) == NFKC {
f.compatibility = true
f.info = lookupInfoNFKC
} else {
f.info = lookupInfoNFC
}
f.nextMain = nextDecomposed
if Form(i) == NFC || Form(i) == NFKC {
f.nextMain = nextComposed
f.composing = true
}
}
}
var formTable = []*formInfo{{
form: NFC,
composing: true,
compatibility: false,
info: lookupInfoNFC,
nextMain: nextComposed,
}, {
form: NFD,
composing: false,
compatibility: false,
info: lookupInfoNFC,
nextMain: nextDecomposed,
}, {
form: NFKC,
composing: true,
compatibility: true,
info: lookupInfoNFKC,
nextMain: nextComposed,
}, {
form: NFKD,
composing: false,
compatibility: true,
info: lookupInfoNFKC,
nextMain: nextDecomposed,
}}
// We do not distinguish between boundaries for NFC, NFD, etc. to avoid
// unexpected behavior for the user. For example, in NFD, there is a boundary

View file

@ -1,54 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build test
package norm
import "testing"
func TestProperties(t *testing.T) {
var d runeData
CK := [2]string{"C", "K"}
for k, r := 1, rune(0); r < 0x2ffff; r++ {
if k < len(testData) && r == testData[k].r {
d = testData[k]
k++
}
s := string(r)
for j, p := range []Properties{NFC.PropertiesString(s), NFKC.PropertiesString(s)} {
f := d.f[j]
if p.CCC() != d.ccc {
t.Errorf("%U: ccc(%s): was %d; want %d %X", r, CK[j], p.CCC(), d.ccc, p.index)
}
if p.isYesC() != (f.qc == Yes) {
t.Errorf("%U: YesC(%s): was %v; want %v", r, CK[j], p.isYesC(), f.qc == Yes)
}
if p.combinesBackward() != (f.qc == Maybe) {
t.Errorf("%U: combines backwards(%s): was %v; want %v", r, CK[j], p.combinesBackward(), f.qc == Maybe)
}
if p.nLeadingNonStarters() != d.nLead {
t.Errorf("%U: nLead(%s): was %d; want %d %#v %#v", r, CK[j], p.nLeadingNonStarters(), d.nLead, p, d)
}
if p.nTrailingNonStarters() != d.nTrail {
t.Errorf("%U: nTrail(%s): was %d; want %d %#v %#v", r, CK[j], p.nTrailingNonStarters(), d.nTrail, p, d)
}
if p.combinesForward() != f.combinesForward {
t.Errorf("%U: combines forward(%s): was %v; want %v %#v", r, CK[j], p.combinesForward(), f.combinesForward, p)
}
// Skip Hangul as it is algorithmically computed.
if r >= hangulBase && r < hangulEnd {
continue
}
if p.hasDecomposition() {
if has := f.decomposition != ""; !has {
t.Errorf("%U: hasDecomposition(%s): was %v; want %v", r, CK[j], p.hasDecomposition(), has)
}
if string(p.Decomposition()) != f.decomposition {
t.Errorf("%U: decomp(%s): was %+q; want %+q", r, CK[j], p.Decomposition(), f.decomposition)
}
}
}
}
}

View file

@ -1,98 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"strings"
"testing"
)
func doIterNorm(f Form, s string) []byte {
acc := []byte{}
i := Iter{}
i.InitString(f, s)
for !i.Done() {
acc = append(acc, i.Next()...)
}
return acc
}
func TestIterNext(t *testing.T) {
runNormTests(t, "IterNext", func(f Form, out []byte, s string) []byte {
return doIterNorm(f, string(append(out, s...)))
})
}
type SegmentTest struct {
in string
out []string
}
var segmentTests = []SegmentTest{
{"\u1E0A\u0323a", []string{"\x44\u0323\u0307", "a", ""}},
{rep('a', segSize), append(strings.Split(rep('a', segSize), ""), "")},
{rep('a', segSize+2), append(strings.Split(rep('a', segSize+2), ""), "")},
{rep('a', segSize) + "\u0300aa",
append(strings.Split(rep('a', segSize-1), ""), "a\u0300", "a", "a", "")},
// U+0f73 is NOT treated as a starter as it is a modifier
{"a" + grave(29) + "\u0f73", []string{"a" + grave(29), cgj + "\u0f73"}},
{"a\u0f73", []string{"a\u0f73"}},
// U+ff9e is treated as a non-starter.
// TODO: should we? Note that this will only affect iteration, as whether
// or not we do so does not affect the normalization output and will either
// way result in consistent iteration output.
{"a" + grave(30) + "\uff9e", []string{"a" + grave(30), cgj + "\uff9e"}},
{"a\uff9e", []string{"a\uff9e"}},
}
var segmentTestsK = []SegmentTest{
{"\u3332", []string{"\u30D5", "\u30A1", "\u30E9", "\u30C3", "\u30C8\u3099", ""}},
// last segment of multi-segment decomposition needs normalization
{"\u3332\u093C", []string{"\u30D5", "\u30A1", "\u30E9", "\u30C3", "\u30C8\u093C\u3099", ""}},
{"\u320E", []string{"\x28", "\uAC00", "\x29"}},
// last segment should be copied to start of buffer.
{"\ufdfa", []string{"\u0635", "\u0644", "\u0649", " ", "\u0627", "\u0644", "\u0644", "\u0647", " ", "\u0639", "\u0644", "\u064a", "\u0647", " ", "\u0648", "\u0633", "\u0644", "\u0645", ""}},
{"\ufdfa" + grave(30), []string{"\u0635", "\u0644", "\u0649", " ", "\u0627", "\u0644", "\u0644", "\u0647", " ", "\u0639", "\u0644", "\u064a", "\u0647", " ", "\u0648", "\u0633", "\u0644", "\u0645" + grave(30), ""}},
{"\uFDFA" + grave(64), []string{"\u0635", "\u0644", "\u0649", " ", "\u0627", "\u0644", "\u0644", "\u0647", " ", "\u0639", "\u0644", "\u064a", "\u0647", " ", "\u0648", "\u0633", "\u0644", "\u0645" + grave(30), cgj + grave(30), cgj + grave(4), ""}},
// Hangul and Jamo are grouped togeter.
{"\uAC00", []string{"\u1100\u1161", ""}},
{"\uAC01", []string{"\u1100\u1161\u11A8", ""}},
{"\u1100\u1161", []string{"\u1100\u1161", ""}},
}
// Note that, by design, segmentation is equal for composing and decomposing forms.
func TestIterSegmentation(t *testing.T) {
segmentTest(t, "SegmentTestD", NFD, segmentTests)
segmentTest(t, "SegmentTestC", NFC, segmentTests)
segmentTest(t, "SegmentTestKD", NFKD, segmentTestsK)
segmentTest(t, "SegmentTestKC", NFKC, segmentTestsK)
}
func segmentTest(t *testing.T, name string, f Form, tests []SegmentTest) {
iter := Iter{}
for i, tt := range tests {
iter.InitString(f, tt.in)
for j, seg := range tt.out {
if seg == "" {
if !iter.Done() {
res := string(iter.Next())
t.Errorf(`%s:%d:%d: expected Done()==true, found segment %+q`, name, i, j, res)
}
continue
}
if iter.Done() {
t.Errorf("%s:%d:%d: Done()==true, want false", name, i, j)
}
seg = f.String(seg)
if res := string(iter.Next()); res != seg {
t.Errorf(`%s:%d:%d" segment was %+q (%d); want %+q (%d)`, name, i, j, pc(res), len(res), pc(seg), len(seg))
}
}
}
}

View file

@ -35,12 +35,9 @@ func main() {
computeNonStarterCounts()
verifyComputed()
printChars()
if *test {
testDerived()
printTestdata()
} else {
makeTables()
}
testDerived()
printTestdata()
makeTables()
}
var (
@ -602,6 +599,7 @@ func printCharInfoTables(w io.Writer) int {
}
index := normalDecomp
nTrail := chars[r].nTrailingNonStarters
nLead := chars[r].nLeadingNonStarters
if tccc > 0 || lccc > 0 || nTrail > 0 {
tccc <<= 2
tccc |= nTrail
@ -612,7 +610,7 @@ func printCharInfoTables(w io.Writer) int {
index = firstCCC
}
}
if lccc > 0 {
if lccc > 0 || nLead > 0 {
s += string([]byte{lccc})
if index == firstCCC {
log.Fatalf("%U: multi-segment decomposition not supported for decompositions with leading CCC != 0", r)

View file

@ -1,14 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm_test
import (
"testing"
)
func TestPlaceHolder(t *testing.T) {
// Does nothing, just allows the Makefile to be canonical
// while waiting for the package itself to be written.
}

View file

@ -2,13 +2,18 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Note: the file data_test.go that is generated should not be checked in.
//go:generate go run maketables.go triegen.go
//go:generate go run maketables.go triegen.go -test
//go:generate go test -tags test
// Package norm contains types and functions for normalizing Unicode strings.
package norm // import "golang.org/x/text/unicode/norm"
import "unicode/utf8"
import (
"unicode/utf8"
"golang.org/x/text/transform"
)
// A Form denotes a canonical representation of Unicode code points.
// The Unicode-defined normalization and equivalence forms are:
@ -263,6 +268,34 @@ func (f Form) QuickSpan(b []byte) int {
return n
}
// Span implements transform.SpanningTransformer. It returns a boundary n such
// that b[0:n] == f(b[0:n]). It is not guaranteed to return the largest such n.
func (f Form) Span(b []byte, atEOF bool) (n int, err error) {
n, ok := formTable[f].quickSpan(inputBytes(b), 0, len(b), atEOF)
if n < len(b) {
if !ok {
err = transform.ErrEndOfSpan
} else {
err = transform.ErrShortSrc
}
}
return n, err
}
// SpanString returns a boundary n such that s[0:n] == f(s[0:n]).
// It is not guaranteed to return the largest such n.
func (f Form) SpanString(s string, atEOF bool) (n int, err error) {
n, ok := formTable[f].quickSpan(inputString(s), 0, len(s), atEOF)
if n < len(s) {
if !ok {
err = transform.ErrEndOfSpan
} else {
err = transform.ErrShortSrc
}
}
return n, err
}
// quickSpan returns a boundary n such that src[0:n] == f(src[0:n]) and
// whether any non-normalized parts were found. If atEOF is false, n will
// not point past the last segment if this segment might be become
@ -321,7 +354,7 @@ func (f *formInfo) quickSpan(src input, i, end int, atEOF bool) (n int, ok bool)
return lastSegStart, false
}
// QuickSpanString returns a boundary n such that b[0:n] == f(s[0:n]).
// QuickSpanString returns a boundary n such that s[0:n] == f(s[0:n]).
// It is not guaranteed to return the largest such n.
func (f Form) QuickSpanString(s string) int {
n, _ := formTable[f].quickSpan(inputString(s), 0, len(s), true)
@ -344,7 +377,6 @@ func (f Form) firstBoundary(src input, nsrc int) int {
// We should call ss.first here, but we can't as the first rune is
// skipped already. This means FirstBoundary can't really determine
// CGJ insertion points correctly. Luckily it doesn't have to.
// TODO: consider adding NextBoundary
for {
info := fd.info(src, i)
if info.size == 0 {
@ -369,6 +401,56 @@ func (f Form) FirstBoundaryInString(s string) int {
return f.firstBoundary(inputString(s), len(s))
}
// NextBoundary reports the index of the boundary between the first and next
// segment in b or -1 if atEOF is false and there are not enough bytes to
// determine this boundary.
func (f Form) NextBoundary(b []byte, atEOF bool) int {
return f.nextBoundary(inputBytes(b), len(b), atEOF)
}
// NextBoundaryInString reports the index of the boundary between the first and
// next segment in b or -1 if atEOF is false and there are not enough bytes to
// determine this boundary.
func (f Form) NextBoundaryInString(s string, atEOF bool) int {
return f.nextBoundary(inputString(s), len(s), atEOF)
}
func (f Form) nextBoundary(src input, nsrc int, atEOF bool) int {
if nsrc == 0 {
if atEOF {
return 0
}
return -1
}
fd := formTable[f]
info := fd.info(src, 0)
if info.size == 0 {
if atEOF {
return 1
}
return -1
}
ss := streamSafe(0)
ss.first(info)
for i := int(info.size); i < nsrc; i += int(info.size) {
info = fd.info(src, i)
if info.size == 0 {
if atEOF {
return i
}
return -1
}
if s := ss.next(info); s != ssSuccess {
return i
}
}
if !atEOF && !info.BoundaryAfter() && !ss.isMax() {
return -1
}
return nsrc
}
// LastBoundary returns the position i of the last boundary in b
// or -1 if b contains no boundary.
func (f Form) LastBoundary(b []byte) int {

File diff suppressed because it is too large Load diff

View file

@ -112,7 +112,6 @@ func (r *normReader) Read(p []byte) (int, error) {
}
}
}
panic("should not reach here")
}
// Reader returns a new reader that implements Read

View file

@ -1,56 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"bytes"
"fmt"
"testing"
)
var bufSizes = []int{1, 2, 3, 4, 5, 6, 7, 8, 100, 101, 102, 103, 4000, 4001, 4002, 4003}
func readFunc(size int) appendFunc {
return func(f Form, out []byte, s string) []byte {
out = append(out, s...)
r := f.Reader(bytes.NewBuffer(out))
buf := make([]byte, size)
result := []byte{}
for n, err := 0, error(nil); err == nil; {
n, err = r.Read(buf)
result = append(result, buf[:n]...)
}
return result
}
}
func TestReader(t *testing.T) {
for _, s := range bufSizes {
name := fmt.Sprintf("TestReader%d", s)
runNormTests(t, name, readFunc(s))
}
}
func writeFunc(size int) appendFunc {
return func(f Form, out []byte, s string) []byte {
in := append(out, s...)
result := new(bytes.Buffer)
w := f.Writer(result)
buf := make([]byte, size)
for n := 0; len(in) > 0; in = in[n:] {
n = copy(buf, in)
_, _ = w.Write(buf[:n])
}
w.Close()
return result.Bytes()
}
}
func TestWriter(t *testing.T) {
for _, s := range bufSizes {
name := fmt.Sprintf("TestWriter%d", s)
runNormTests(t, name, writeFunc(s))
}
}

File diff suppressed because it is too large Load diff

View file

@ -1,101 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"fmt"
"testing"
"golang.org/x/text/transform"
)
func TestTransform(t *testing.T) {
tests := []struct {
f Form
in, out string
eof bool
dstSize int
err error
}{
{NFC, "ab", "ab", true, 2, nil},
{NFC, "qx", "qx", true, 2, nil},
{NFD, "qx", "qx", true, 2, nil},
{NFC, "", "", true, 1, nil},
{NFD, "", "", true, 1, nil},
{NFC, "", "", false, 1, nil},
{NFD, "", "", false, 1, nil},
// Normalized segment does not fit in destination.
{NFD, "ö", "", true, 1, transform.ErrShortDst},
{NFD, "ö", "", true, 2, transform.ErrShortDst},
// As an artifact of the algorithm, only full segments are written.
// This is not strictly required, and some bytes could be written.
// In practice, for Transform to not block, the destination buffer
// should be at least MaxSegmentSize to work anyway and these edge
// conditions will be relatively rare.
{NFC, "ab", "", true, 1, transform.ErrShortDst},
// This is even true for inert runes.
{NFC, "qx", "", true, 1, transform.ErrShortDst},
{NFC, "a\u0300abc", "\u00e0a", true, 4, transform.ErrShortDst},
// We cannot write a segment if succesive runes could still change the result.
{NFD, "ö", "", false, 3, transform.ErrShortSrc},
{NFC, "a\u0300", "", false, 4, transform.ErrShortSrc},
{NFD, "a\u0300", "", false, 4, transform.ErrShortSrc},
{NFC, "ö", "", false, 3, transform.ErrShortSrc},
{NFC, "a\u0300", "", true, 1, transform.ErrShortDst},
// Theoretically could fit, but won't due to simplified checks.
{NFC, "a\u0300", "", true, 2, transform.ErrShortDst},
{NFC, "a\u0300", "", true, 3, transform.ErrShortDst},
{NFC, "a\u0300", "\u00e0", true, 4, nil},
{NFD, "öa\u0300", "o\u0308", false, 8, transform.ErrShortSrc},
{NFD, "öa\u0300ö", "o\u0308a\u0300", true, 8, transform.ErrShortDst},
{NFD, "öa\u0300ö", "o\u0308a\u0300", false, 12, transform.ErrShortSrc},
// Illegal input is copied verbatim.
{NFD, "\xbd\xb2=\xbc ", "\xbd\xb2=\xbc ", true, 8, nil},
}
b := make([]byte, 100)
for i, tt := range tests {
nDst, _, err := tt.f.Transform(b[:tt.dstSize], []byte(tt.in), tt.eof)
out := string(b[:nDst])
if out != tt.out || err != tt.err {
t.Errorf("%d: was %+q (%v); want %+q (%v)", i, out, err, tt.out, tt.err)
}
if want := tt.f.String(tt.in)[:nDst]; want != out {
t.Errorf("%d: incorect normalization: was %+q; want %+q", i, out, want)
}
}
}
var transBufSizes = []int{
MaxTransformChunkSize,
3 * MaxTransformChunkSize / 2,
2 * MaxTransformChunkSize,
3 * MaxTransformChunkSize,
100 * MaxTransformChunkSize,
}
func doTransNorm(f Form, buf []byte, b []byte) []byte {
acc := []byte{}
for p := 0; p < len(b); {
nd, ns, _ := f.Transform(buf[:], b[p:], true)
p += ns
acc = append(acc, buf[:nd]...)
}
return acc
}
func TestTransformNorm(t *testing.T) {
for _, sz := range transBufSizes {
buf := make([]byte, sz)
runNormTests(t, fmt.Sprintf("Transform:%d", sz), func(f Form, out []byte, s string) []byte {
return doTransNorm(f, buf, append(out, s...))
})
}
}

View file

@ -1,275 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"bufio"
"bytes"
"fmt"
"regexp"
"runtime"
"strconv"
"strings"
"sync"
"testing"
"time"
"unicode/utf8"
"golang.org/x/text/internal/gen"
"golang.org/x/text/internal/testtext"
)
var once sync.Once
func skipShort(t *testing.T) {
testtext.SkipIfNotLong(t)
once.Do(func() { loadTestData(t) })
}
// This regression test runs the test set in NormalizationTest.txt
// (taken from http://www.unicode.org/Public/<unicode.Version>/ucd/).
//
// NormalizationTest.txt has form:
// @Part0 # Specific cases
// #
// 1E0A;1E0A;0044 0307;1E0A;0044 0307; # (Ḋ; Ḋ; D◌̇; Ḋ; D◌̇; ) LATIN CAPITAL LETTER D WITH DOT ABOVE
// 1E0C;1E0C;0044 0323;1E0C;0044 0323; # (Ḍ; Ḍ; D◌̣; Ḍ; D◌̣; ) LATIN CAPITAL LETTER D WITH DOT BELOW
//
// Each test has 5 columns (c1, c2, c3, c4, c5), where
// (c1, c2, c3, c4, c5) == (c1, NFC(c1), NFD(c1), NFKC(c1), NFKD(c1))
//
// CONFORMANCE:
// 1. The following invariants must be true for all conformant implementations
//
// NFC
// c2 == NFC(c1) == NFC(c2) == NFC(c3)
// c4 == NFC(c4) == NFC(c5)
//
// NFD
// c3 == NFD(c1) == NFD(c2) == NFD(c3)
// c5 == NFD(c4) == NFD(c5)
//
// NFKC
// c4 == NFKC(c1) == NFKC(c2) == NFKC(c3) == NFKC(c4) == NFKC(c5)
//
// NFKD
// c5 == NFKD(c1) == NFKD(c2) == NFKD(c3) == NFKD(c4) == NFKD(c5)
//
// 2. For every code point X assigned in this version of Unicode that is not
// specifically listed in Part 1, the following invariants must be true
// for all conformant implementations:
//
// X == NFC(X) == NFD(X) == NFKC(X) == NFKD(X)
//
// Column types.
const (
cRaw = iota
cNFC
cNFD
cNFKC
cNFKD
cMaxColumns
)
// Holds data from NormalizationTest.txt
var part []Part
type Part struct {
name string
number int
tests []Test
}
type Test struct {
name string
partnr int
number int
r rune // used for character by character test
cols [cMaxColumns]string // Each has 5 entries, see below.
}
func (t Test) Name() string {
if t.number < 0 {
return part[t.partnr].name
}
return fmt.Sprintf("%s:%d", part[t.partnr].name, t.number)
}
var partRe = regexp.MustCompile(`@Part(\d) # (.*)$`)
var testRe = regexp.MustCompile(`^` + strings.Repeat(`([\dA-F ]+);`, 5) + ` # (.*)$`)
var counter int
// Load the data form NormalizationTest.txt
func loadTestData(t *testing.T) {
f := gen.OpenUCDFile("NormalizationTest.txt")
defer f.Close()
scanner := bufio.NewScanner(f)
for scanner.Scan() {
line := scanner.Text()
if len(line) == 0 || line[0] == '#' {
continue
}
m := partRe.FindStringSubmatch(line)
if m != nil {
if len(m) < 3 {
t.Fatal("Failed to parse Part: ", line)
}
i, err := strconv.Atoi(m[1])
if err != nil {
t.Fatal(err)
}
name := m[2]
part = append(part, Part{name: name[:len(name)-1], number: i})
continue
}
m = testRe.FindStringSubmatch(line)
if m == nil || len(m) < 7 {
t.Fatalf(`Failed to parse: "%s" result: %#v`, line, m)
}
test := Test{name: m[6], partnr: len(part) - 1, number: counter}
counter++
for j := 1; j < len(m)-1; j++ {
for _, split := range strings.Split(m[j], " ") {
r, err := strconv.ParseUint(split, 16, 64)
if err != nil {
t.Fatal(err)
}
if test.r == 0 {
// save for CharacterByCharacterTests
test.r = rune(r)
}
var buf [utf8.UTFMax]byte
sz := utf8.EncodeRune(buf[:], rune(r))
test.cols[j-1] += string(buf[:sz])
}
}
part := &part[len(part)-1]
part.tests = append(part.tests, test)
}
if scanner.Err() != nil {
t.Fatal(scanner.Err())
}
}
func cmpResult(t *testing.T, tc *Test, name string, f Form, gold, test, result string) {
if gold != result {
t.Errorf("%s:%s: %s(%+q)=%+q; want %+q: %s",
tc.Name(), name, fstr[f], test, result, gold, tc.name)
}
}
func cmpIsNormal(t *testing.T, tc *Test, name string, f Form, test string, result, want bool) {
if result != want {
t.Errorf("%s:%s: %s(%+q)=%v; want %v", tc.Name(), name, fstr[f], test, result, want)
}
}
func doTest(t *testing.T, tc *Test, f Form, gold, test string) {
testb := []byte(test)
result := f.Bytes(testb)
cmpResult(t, tc, "Bytes", f, gold, test, string(result))
sresult := f.String(test)
cmpResult(t, tc, "String", f, gold, test, sresult)
acc := []byte{}
i := Iter{}
i.InitString(f, test)
for !i.Done() {
acc = append(acc, i.Next()...)
}
cmpResult(t, tc, "Iter.Next", f, gold, test, string(acc))
buf := make([]byte, 128)
acc = nil
for p := 0; p < len(testb); {
nDst, nSrc, _ := f.Transform(buf, testb[p:], true)
acc = append(acc, buf[:nDst]...)
p += nSrc
}
cmpResult(t, tc, "Transform", f, gold, test, string(acc))
for i := range test {
out := f.Append(f.Bytes([]byte(test[:i])), []byte(test[i:])...)
cmpResult(t, tc, fmt.Sprintf(":Append:%d", i), f, gold, test, string(out))
}
cmpIsNormal(t, tc, "IsNormal", f, test, f.IsNormal([]byte(test)), test == gold)
cmpIsNormal(t, tc, "IsNormalString", f, test, f.IsNormalString(test), test == gold)
}
func doConformanceTests(t *testing.T, tc *Test, partn int) {
for i := 0; i <= 2; i++ {
doTest(t, tc, NFC, tc.cols[1], tc.cols[i])
doTest(t, tc, NFD, tc.cols[2], tc.cols[i])
doTest(t, tc, NFKC, tc.cols[3], tc.cols[i])
doTest(t, tc, NFKD, tc.cols[4], tc.cols[i])
}
for i := 3; i <= 4; i++ {
doTest(t, tc, NFC, tc.cols[3], tc.cols[i])
doTest(t, tc, NFD, tc.cols[4], tc.cols[i])
doTest(t, tc, NFKC, tc.cols[3], tc.cols[i])
doTest(t, tc, NFKD, tc.cols[4], tc.cols[i])
}
}
func TestCharacterByCharacter(t *testing.T) {
skipShort(t)
tests := part[1].tests
var last rune = 0
for i := 0; i <= len(tests); i++ { // last one is special case
var r rune
if i == len(tests) {
r = 0x2FA1E // Don't have to go to 0x10FFFF
} else {
r = tests[i].r
}
for last++; last < r; last++ {
// Check all characters that were not explicitly listed in the test.
tc := &Test{partnr: 1, number: -1}
char := string(last)
doTest(t, tc, NFC, char, char)
doTest(t, tc, NFD, char, char)
doTest(t, tc, NFKC, char, char)
doTest(t, tc, NFKD, char, char)
}
if i < len(tests) {
doConformanceTests(t, &tests[i], 1)
}
}
}
func TestStandardTests(t *testing.T) {
skipShort(t)
for _, j := range []int{0, 2, 3} {
for _, test := range part[j].tests {
doConformanceTests(t, &test, j)
}
}
}
// TestPerformance verifies that normalization is O(n). If any of the
// code does not properly check for maxCombiningChars, normalization
// may exhibit O(n**2) behavior.
func TestPerformance(t *testing.T) {
skipShort(t)
runtime.GOMAXPROCS(2)
success := make(chan bool, 1)
go func() {
buf := bytes.Repeat([]byte("\u035D"), 1024*1024)
buf = append(buf, "\u035B"...)
NFC.Append(nil, buf...)
success <- true
}()
timeout := time.After(1 * time.Second)
select {
case <-success:
// test completed before the timeout
case <-timeout:
t.Errorf(`unexpectedly long time to complete PerformanceTest`)
}
}