206 lines
6.7 KiB
Go
206 lines
6.7 KiB
Go
|
// Copyright (c) 2017 Couchbase, Inc.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package geo
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
|
||
|
"github.com/blevesearch/bleve/numeric"
|
||
|
)
|
||
|
|
||
|
// GeoBits is the number of bits used for a single geo point
|
||
|
// Currently this is 32bits for lon and 32bits for lat
|
||
|
var GeoBits uint = 32
|
||
|
|
||
|
var minLon = -180.0
|
||
|
var minLat = -90.0
|
||
|
var geoTolerance = 1E-6
|
||
|
var lonScale = float64((uint64(0x1)<<GeoBits)-1) / 360.0
|
||
|
var latScale = float64((uint64(0x1)<<GeoBits)-1) / 180.0
|
||
|
|
||
|
// MortonHash computes the morton hash value for the provided geo point
|
||
|
// This point is ordered as lon, lat.
|
||
|
func MortonHash(lon, lat float64) uint64 {
|
||
|
return numeric.Interleave(scaleLon(lon), scaleLat(lat))
|
||
|
}
|
||
|
|
||
|
func scaleLon(lon float64) uint64 {
|
||
|
rv := uint64((lon - minLon) * lonScale)
|
||
|
return rv
|
||
|
}
|
||
|
|
||
|
func scaleLat(lat float64) uint64 {
|
||
|
rv := uint64((lat - minLat) * latScale)
|
||
|
return rv
|
||
|
}
|
||
|
|
||
|
// MortonUnhashLon extracts the longitude value from the provided morton hash.
|
||
|
func MortonUnhashLon(hash uint64) float64 {
|
||
|
return unscaleLon(numeric.Deinterleave(hash))
|
||
|
}
|
||
|
|
||
|
// MortonUnhashLat extracts the latitude value from the provided morton hash.
|
||
|
func MortonUnhashLat(hash uint64) float64 {
|
||
|
return unscaleLat(numeric.Deinterleave(hash >> 1))
|
||
|
}
|
||
|
|
||
|
func unscaleLon(lon uint64) float64 {
|
||
|
return (float64(lon) / lonScale) + minLon
|
||
|
}
|
||
|
|
||
|
func unscaleLat(lat uint64) float64 {
|
||
|
return (float64(lat) / latScale) + minLat
|
||
|
}
|
||
|
|
||
|
// compareGeo will compare two float values and see if they are the same
|
||
|
// taking into consideration a known geo tolerance.
|
||
|
func compareGeo(a, b float64) float64 {
|
||
|
compare := a - b
|
||
|
if math.Abs(compare) <= geoTolerance {
|
||
|
return 0
|
||
|
}
|
||
|
return compare
|
||
|
}
|
||
|
|
||
|
// RectIntersects checks whether rectangles a and b intersect
|
||
|
func RectIntersects(aMinX, aMinY, aMaxX, aMaxY, bMinX, bMinY, bMaxX, bMaxY float64) bool {
|
||
|
return !(aMaxX < bMinX || aMinX > bMaxX || aMaxY < bMinY || aMinY > bMaxY)
|
||
|
}
|
||
|
|
||
|
// RectWithin checks whether box a is within box b
|
||
|
func RectWithin(aMinX, aMinY, aMaxX, aMaxY, bMinX, bMinY, bMaxX, bMaxY float64) bool {
|
||
|
rv := !(aMinX < bMinX || aMinY < bMinY || aMaxX > bMaxX || aMaxY > bMaxY)
|
||
|
return rv
|
||
|
}
|
||
|
|
||
|
// BoundingBoxContains checks whether the lon/lat point is within the box
|
||
|
func BoundingBoxContains(lon, lat, minLon, minLat, maxLon, maxLat float64) bool {
|
||
|
return compareGeo(lon, minLon) >= 0 && compareGeo(lon, maxLon) <= 0 &&
|
||
|
compareGeo(lat, minLat) >= 0 && compareGeo(lat, maxLat) <= 0
|
||
|
}
|
||
|
|
||
|
// ComputeBoundingBox will compute a bounding box around the provided point
|
||
|
// which surrounds a circle of the provided radius (in meters).
|
||
|
func ComputeBoundingBox(centerLon, centerLat,
|
||
|
radius float64) (upperLeftLon float64, upperLeftLat float64,
|
||
|
lowerRightLon float64, lowerRightLat float64) {
|
||
|
_, tlat := pointFromLonLatBearing(centerLon, centerLat, 0, radius)
|
||
|
rlon, _ := pointFromLonLatBearing(centerLon, centerLat, 90, radius)
|
||
|
_, blat := pointFromLonLatBearing(centerLon, centerLat, 180, radius)
|
||
|
llon, _ := pointFromLonLatBearing(centerLon, centerLat, 270, radius)
|
||
|
return normalizeLon(llon), normalizeLat(tlat),
|
||
|
normalizeLon(rlon), normalizeLat(blat)
|
||
|
}
|
||
|
|
||
|
const degreesToRadian = math.Pi / 180
|
||
|
const radiansToDegrees = 180 / math.Pi
|
||
|
const flattening = 1.0 / 298.257223563
|
||
|
const semiMajorAxis = 6378137
|
||
|
const semiMinorAxis = semiMajorAxis * (1.0 - flattening)
|
||
|
const semiMajorAxis2 = semiMajorAxis * semiMajorAxis
|
||
|
const semiMinorAxis2 = semiMinorAxis * semiMinorAxis
|
||
|
|
||
|
// DegreesToRadians converts an angle in degrees to radians
|
||
|
func DegreesToRadians(d float64) float64 {
|
||
|
return d * degreesToRadian
|
||
|
}
|
||
|
|
||
|
// RadiansToDegrees converts an angle in radians to degress
|
||
|
func RadiansToDegrees(r float64) float64 {
|
||
|
return r * radiansToDegrees
|
||
|
}
|
||
|
|
||
|
// pointFromLonLatBearing starts that the provide lon,lat
|
||
|
// then moves in the bearing direction (in degrees)
|
||
|
// this move continues for the provided distance (in meters)
|
||
|
// The lon, lat of this destination location is returned.
|
||
|
func pointFromLonLatBearing(lon, lat, bearing,
|
||
|
dist float64) (float64, float64) {
|
||
|
|
||
|
alpha1 := DegreesToRadians(bearing)
|
||
|
cosA1 := math.Cos(alpha1)
|
||
|
sinA1 := math.Sin(alpha1)
|
||
|
tanU1 := (1 - flattening) * math.Tan(DegreesToRadians(lat))
|
||
|
cosU1 := 1 / math.Sqrt(1+tanU1*tanU1)
|
||
|
sinU1 := tanU1 * cosU1
|
||
|
sig1 := math.Atan2(tanU1, cosA1)
|
||
|
sinAlpha := cosU1 * sinA1
|
||
|
cosSqAlpha := 1 - sinAlpha*sinAlpha
|
||
|
uSq := cosSqAlpha * (semiMajorAxis2 - semiMinorAxis2) / semiMinorAxis2
|
||
|
A := 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)))
|
||
|
B := uSq / 1024 * (256 + uSq*(-128+uSq*(74-47*uSq)))
|
||
|
|
||
|
sigma := dist / (semiMinorAxis * A)
|
||
|
|
||
|
cos25SigmaM := math.Cos(2*sig1 + sigma)
|
||
|
sinSigma := math.Sin(sigma)
|
||
|
cosSigma := math.Cos(sigma)
|
||
|
deltaSigma := B * sinSigma * (cos25SigmaM + (B/4)*
|
||
|
(cosSigma*(-1+2*cos25SigmaM*cos25SigmaM)-(B/6)*cos25SigmaM*
|
||
|
(-1+4*sinSigma*sinSigma)*(-3+4*cos25SigmaM*cos25SigmaM)))
|
||
|
sigmaP := sigma
|
||
|
sigma = dist/(semiMinorAxis*A) + deltaSigma
|
||
|
for math.Abs(sigma-sigmaP) > 1E-12 {
|
||
|
cos25SigmaM = math.Cos(2*sig1 + sigma)
|
||
|
sinSigma = math.Sin(sigma)
|
||
|
cosSigma = math.Cos(sigma)
|
||
|
deltaSigma = B * sinSigma * (cos25SigmaM + (B/4)*
|
||
|
(cosSigma*(-1+2*cos25SigmaM*cos25SigmaM)-(B/6)*cos25SigmaM*
|
||
|
(-1+4*sinSigma*sinSigma)*(-3+4*cos25SigmaM*cos25SigmaM)))
|
||
|
sigmaP = sigma
|
||
|
sigma = dist/(semiMinorAxis*A) + deltaSigma
|
||
|
}
|
||
|
|
||
|
tmp := sinU1*sinSigma - cosU1*cosSigma*cosA1
|
||
|
lat2 := math.Atan2(sinU1*cosSigma+cosU1*sinSigma*cosA1,
|
||
|
(1-flattening)*math.Sqrt(sinAlpha*sinAlpha+tmp*tmp))
|
||
|
lamda := math.Atan2(sinSigma*sinA1, cosU1*cosSigma-sinU1*sinSigma*cosA1)
|
||
|
c := flattening / 16 * cosSqAlpha * (4 + flattening*(4-3*cosSqAlpha))
|
||
|
lam := lamda - (1-c)*flattening*sinAlpha*
|
||
|
(sigma+c*sinSigma*(cos25SigmaM+c*cosSigma*(-1+2*cos25SigmaM*cos25SigmaM)))
|
||
|
|
||
|
rvlon := lon + RadiansToDegrees(lam)
|
||
|
rvlat := RadiansToDegrees(lat2)
|
||
|
|
||
|
return rvlon, rvlat
|
||
|
}
|
||
|
|
||
|
// normalizeLon normalizes a longitude value within the -180 to 180 range
|
||
|
func normalizeLon(lonDeg float64) float64 {
|
||
|
if lonDeg >= -180 && lonDeg <= 180 {
|
||
|
return lonDeg
|
||
|
}
|
||
|
|
||
|
off := math.Mod(lonDeg+180, 360)
|
||
|
if off < 0 {
|
||
|
return 180 + off
|
||
|
} else if off == 0 && lonDeg > 0 {
|
||
|
return 180
|
||
|
}
|
||
|
return -180 + off
|
||
|
}
|
||
|
|
||
|
// normalizeLat normalizes a latitude value within the -90 to 90 range
|
||
|
func normalizeLat(latDeg float64) float64 {
|
||
|
if latDeg >= -90 && latDeg <= 90 {
|
||
|
return latDeg
|
||
|
}
|
||
|
off := math.Abs(math.Mod(latDeg+90, 360))
|
||
|
if off <= 180 {
|
||
|
return off - 90
|
||
|
}
|
||
|
return (360 - off) - 90
|
||
|
}
|