dispatch/vendor/github.com/tdewolff/parse/v2/strconv/float.go

258 lines
5.6 KiB
Go
Raw Normal View History

2020-04-29 02:23:32 +00:00
package strconv
2018-12-17 13:41:24 +00:00
2020-04-29 02:23:32 +00:00
import (
"math"
)
2018-12-17 13:41:24 +00:00
var float64pow10 = []float64{
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22,
}
// Float parses a byte-slice and returns the float it represents.
// If an invalid character is encountered, it will stop there.
func ParseFloat(b []byte) (float64, int) {
i := 0
neg := false
if i < len(b) && (b[i] == '+' || b[i] == '-') {
neg = b[i] == '-'
i++
}
2020-06-15 09:05:32 +00:00
start := i
2018-12-17 13:41:24 +00:00
dot := -1
trunk := -1
n := uint64(0)
for ; i < len(b); i++ {
c := b[i]
if c >= '0' && c <= '9' {
if trunk == -1 {
if n > math.MaxUint64/10 {
trunk = i
} else {
n *= 10
n += uint64(c - '0')
}
}
} else if dot == -1 && c == '.' {
dot = i
} else {
break
}
}
2020-06-15 09:05:32 +00:00
if i == start || i == start+1 && dot == start {
return 0.0, 0
}
2018-12-17 13:41:24 +00:00
f := float64(n)
if neg {
f = -f
}
mantExp := int64(0)
if dot != -1 {
if trunk == -1 {
trunk = i
}
mantExp = int64(trunk - dot - 1)
} else if trunk != -1 {
mantExp = int64(trunk - i)
}
expExp := int64(0)
if i < len(b) && (b[i] == 'e' || b[i] == 'E') {
2020-06-15 09:05:32 +00:00
startExp := i
2018-12-17 13:41:24 +00:00
i++
if e, expLen := ParseInt(b[i:]); expLen > 0 {
expExp = e
i += expLen
2020-06-15 09:05:32 +00:00
} else {
i = startExp
2018-12-17 13:41:24 +00:00
}
}
exp := expExp - mantExp
// copied from strconv/atof.go
if exp == 0 {
return f, i
} else if exp > 0 && exp <= 15+22 { // int * 10^k
// If exponent is big but number of digits is not,
// can move a few zeros into the integer part.
if exp > 22 {
f *= float64pow10[exp-22]
exp = 22
}
if f <= 1e15 && f >= -1e15 {
return f * float64pow10[exp], i
}
} else if exp < 0 && exp >= -22 { // int / 10^k
return f / float64pow10[-exp], i
}
f *= math.Pow10(int(-mantExp))
return f * math.Pow10(int(expExp)), i
}
2020-04-29 02:23:32 +00:00
const log2 = 0.3010299956639812
2018-12-17 13:41:24 +00:00
func float64exp(f float64) int {
exp2 := 0
if f != 0.0 {
x := math.Float64bits(f)
exp2 = int(x>>(64-11-1))&0x7FF - 1023 + 1
}
exp10 := float64(exp2) * log2
if exp10 < 0 {
exp10 -= 1.0
}
return int(exp10)
}
2020-04-29 02:23:32 +00:00
// AppendFloat appends a float to `b` with precision `prec`. It returns the new slice and whether succesful or not. Precision is the number of decimals to display, thus prec + 1 == number of significant digits.
2018-12-17 13:41:24 +00:00
func AppendFloat(b []byte, f float64, prec int) ([]byte, bool) {
if math.IsNaN(f) || math.IsInf(f, 0) {
return b, false
}
neg := false
if f < 0.0 {
f = -f
neg = true
}
2020-04-29 02:23:32 +00:00
if prec < 0 || 17 < prec {
prec = 17 // maximum number of significant digits in double
2018-12-17 13:41:24 +00:00
}
prec -= float64exp(f) // number of digits in front of the dot
f *= math.Pow10(prec)
// calculate mantissa and exponent
mant := int64(f)
mantLen := LenInt(mant)
mantExp := mantLen - prec - 1
if mant == 0 {
return append(b, '0'), true
}
// expLen is zero for positive exponents, because positive exponents are determined later on in the big conversion loop
exp := 0
expLen := 0
if mantExp > 0 {
// positive exponent is determined in the loop below
// but if we initially decreased the exponent to fit in an integer, we can't set the new exponent in the loop alone,
// since the number of zeros at the end determines the positive exponent in the loop, and we just artificially lost zeros
if prec < 0 {
exp = mantExp
}
expLen = 1 + LenInt(int64(exp)) // e + digits
} else if mantExp < -3 {
exp = mantExp
expLen = 2 + LenInt(int64(exp)) // e + minus + digits
} else if mantExp < -1 {
mantLen += -mantExp - 1 // extra zero between dot and first digit
}
// reserve space in b
i := len(b)
maxLen := 1 + mantLen + expLen // dot + mantissa digits + exponent
if neg {
maxLen++
}
if i+maxLen > cap(b) {
b = append(b, make([]byte, maxLen)...)
} else {
b = b[:i+maxLen]
}
// write to string representation
if neg {
b[i] = '-'
i++
}
// big conversion loop, start at the end and move to the front
// initially print trailing zeros and remove them later on
// for example if the first non-zero digit is three positions in front of the dot, it will overwrite the zeros with a positive exponent
zero := true
last := i + mantLen // right-most position of digit that is non-zero + dot
dot := last - prec - exp // position of dot
j := last
for mant > 0 {
if j == dot {
b[j] = '.'
j--
}
newMant := mant / 10
digit := mant - 10*newMant
if zero && digit > 0 {
// first non-zero digit, if we are still behind the dot we can trim the end to this position
// otherwise trim to the dot (including the dot)
if j > dot {
i = j + 1
// decrease negative exponent further to get rid of dot
if exp < 0 {
newExp := exp - (j - dot)
// getting rid of the dot shouldn't lower the exponent to more digits (e.g. -9 -> -10)
if LenInt(int64(newExp)) == LenInt(int64(exp)) {
exp = newExp
dot = j
j--
i--
}
}
} else {
i = dot
}
last = j
zero = false
}
b[j] = '0' + byte(digit)
j--
mant = newMant
}
if j > dot {
// extra zeros behind the dot
for j > dot {
b[j] = '0'
j--
}
b[j] = '.'
} else if last+3 < dot {
// add positive exponent because we have 3 or more zeros in front of the dot
i = last + 1
exp = dot - last - 1
} else if j == dot {
// handle 0.1
b[j] = '.'
}
// exponent
if exp != 0 {
if exp == 1 {
b[i] = '0'
i++
} else if exp == 2 {
b[i] = '0'
b[i+1] = '0'
i += 2
} else {
b[i] = 'e'
i++
if exp < 0 {
b[i] = '-'
i++
exp = -exp
}
i += LenInt(int64(exp))
j := i
for exp > 0 {
newExp := exp / 10
digit := exp - 10*newExp
j--
b[j] = '0' + byte(digit)
exp = newExp
}
}
}
return b[:i], true
}